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Abstract : 

                     In this paper we consider that the best way introducing this connection is through  

generalization of the physical model and the graphical model .We will be walking for some time 

where the connections between graph theory  and statistical physics lead us. 
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Introduction: 

                    The purpose of this note is to 

describe in passing some beautiful basic 

concepts internal acing statistical physics, 

graph theory and Statistical theory.  

                    The connection between 

statistical physics and graph theory are 

extensive and have a long history . A survey 

on these connections was published already 

in 1971 by Essam it main deals with the 

Ising model. In the Ising model we consider 

a set of particles, which can have two sates 

.The state of the   ith particle is described by 

the variable   ,which takes one of the two 

values +1 or -1.The connection with graph 

theory comes from the calculation of the 

partition function of model . 

                            The Ising model was 

introduced in 1920 by Wilhelm Lentz as a 

model for ferromagnetism, and later studied 

by Ernst Ising. Ising could only solve it in 

one dimension; it took until 1944 before it 

was solved in the 2-dimensional case, 

without an external magnetic field, by Lars 

Onsager. The Ising model is perhaps the 

most studied model in statistical physics. 

Between 1969 and 1996 thousands of 

publications on this model have appeared. 

The project started under the claim that the 

mathematical language of graph theory 

could be used to advance the study of spin 

models used in statistical physics. Our 

approach is to find scalable relations for the 

coefficients of the Ising partition function 

for graph families of interest in statistical 

physics. 

                               There are also some 

previously unconsidered questions, inspired 

by the use of the model as an invariant for 

graphs, which are of interest from both a 

mathematical and physical point of view. 

Other work focuses on the Potts model and 

its connection to coloring of graphs. 

                   In this model we consider a 

graph G=(V,E) with each node of  which we 

associate a spin. The spin can have one of  q 

values .The basic physical principal of the 

model  is the energy  between two 

intersecting spins is set to zero for identical 

spins and it is equal to constant if they are  

not. In this case the critical singularities  in 

thermodynamics functions  are different  

from those obtained by using  the Ising 

model. 

Euler’s Theorem  Perhaps the first theorem 

of graph theory is the Euler’s theorem, and it 

is also about walking. 

Theorem :  A graph G = (V,E) has a closed 

walk containing each edge exactly once if 

and only if it is connected and each vertex 

has an even number of edges incident with 

it. 

                 



   This theorem has an easy proof. Let us call 

a set A of edges even if each vertex of  V is 

incident with an even number of edges of A. 

Connectivity and evenness are clearly 

necessary conditions for the existence of 

such a closed walk. 

                  In the simplest formulation   of 

the Potts model with q states },....3,2,1{ q , the 

Hamiltonian graphical the system can have 

any two following forms: 
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Where   is a configuration of the graph, i.e. 

an assignment of a spin to each node of  

G=(V,E). i  is the spin at node i and   is the 

Kronecker symbol. The physical model with 

zero external field is a special case q=2,so 

that the spins are +1 and-1. 

                The probability ),( p  of finding 

the graph in a  particular state   at a given 

temperature is obtained by the following 

result 
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Where )(GZ i is partition function for a given 

Hamiltonian in the Graph Model. 

The energy (Hamiltonian) of the state 

Let us consider all the different spin 

configuration for cyclic graph with  n=4 . 

aware that are 4 equivalent configuration for 

542 ,  and as well 2 equivalent for

3 . The Hamiltonian  )(
1
GH  for  these  

configuration are   
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  Then the partition of this graph is given by 
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Edge detecting Graphs in Stastical 

Models : 

                            Lets  us define the Tutte 

polynomial , we define the graph operations. 

The  deletion of  an edge ‘e’ in the graphs G 

,representing by G-e ,consists of  removing 

the corresponding edge without changing 

the rest of  the graph, i,e .the end nodes of 

the edge remain in the graph .The other 

operation is the edge contraction denoted by 

G/e, which  consists in glug together the two 

end nodes of the edge ‘e’ and then removing  

‘e’. Both operations, edge deletion and 

contraction, are commutative, and the 

operation G-S and G/S, where S is a subset 

of edges, are well defined. We notice here 

that the graphs created by these 

transformations are no longer simple graphs, 

they  are pseudo graphs which may contain 

self-looped and multi-looped edges.  

                We also see some types are a 

bridge is an edge whose removal 

disconnects   the graph. A self loop is an 

edge having the two end points  incident at 

the same node. 

Then the Tutte Polynomial T(G;x,y) is 

defined as follows: 

(1). T(G;x,y)=T(G-e;x,y)+T(G/e:x,y) 

(2).T(G:x,y)=xiyj 

      Where i and j represent the number of  

bridges and self –loops in the subgraphs. 

 

 



Coloring of  a Graph G  in Statistical 

model   

              Let  us consider a proper coloring 

of a graph G, which is an assignment of 

color to each node of  G such that any two 

adjacent nodes have different colors. The 

chromatic polynomial );( qG  of the graph G 

is the  number of ways in which “ q” colors 

can be assigned to nodes of  G such that no 

two adjacent nodes have the same color.  

The following are two interesting 

characteristics of the chromatic polynomial. 
);/();():( qeGqeGqG  

nodesnongraphtrivaltheforqqG ):(

Thus, the chromatic polynomial fulfill the 

same contraction/deletion rules as the Tutte 

polynomial . 

Conclusion : 

                       In this paper  we will cover 

some of the most important areas of 

applications of graph theory in physics. 

These include condensed matter physics, 

statistical physics, Thus graph theory and 

network theory have helped to broaden the 

horizons of physics to embrace the study of 

new complex systems. We hope this work 

motivates the reader to find more about the 

connections between graph theory and 

physics. 
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