ON THE FUZZY METRIC PLACES

R. Srinivasan*, K.Renganathan**
${ }^{1}$ Department of Mathematics, Kongunadu College of Engineering and Technology, Tiruchirappalli, Tamilnadu, India
${ }^{2}$ Department of Mathematics, K.Ramakrishnan College of Technology, Trichy

Abstract

Zadeh [Zadeh, 1965] introduced the concepts of fuzzy sets in1965, and in the next decade Kramosil and Michalek [Kramosil \& Michalek,1975] introduced the concept of fuzzy metric space with the help of continuous t-norms in1975 which opened an avenue for further development of analysis in such spaces which have very important applications in quantumphysics particularly in connections with both string and $E^{(\infty)}$ theory which were given and studied by EI Naschie [El Naschie ,1998]. George and Veeramani [George \&Veeramani ,1994,1997] modified the concept of fuzzyPmetric space introduced by Kramosil and Michalek also with the help of continuous t - norms. In this search we will define in different way the fuzzy metric space by given definitions about the fuzzy families, the fuzzy field, the fuzzy space, and other concepts based on that every real number r is replaced by fuzzy number r (either triangular fuzzy number or singleton fuzzy set). For more details see [Kramosil \&Michalek, 1975] [Erceg, 1979], [Grabiec, 1988], [Kaleva \& Seikkala, 1984].

KeyWord: Fuzzy Metric Space, Triangular Fuzzy number, Operations of Fuzzy numbers, Fuzzy Pseudo-Metric, Fuzzy mapping.

1. Some Definitions and Concepts about The Fuzzy Set

Definition 1.1. [Zadeh, 1965]

If X is a collection of objects denoted generically by x , then a fuzzy set A in X is a set of order pairs:-

$$
\bar{A}=\{(x, \bar{A}(x)):-x \in X\}
$$

$A(x)$ is called the membership function or grade of membership of x in A that maps X to the unite interval $[0,1]$.

Definition 1.2. [Zadeh, 1965]
The standard intersection of fuzzy sets A and B is defined as

$$
\begin{aligned}
\begin{aligned}
(\bar{A} \cap \bar{B})(x) & =\min \{\bar{A}(x), \bar{B}(x)\} \\
& =\bar{A}(x) \wedge \bar{B}(x)
\end{aligned} \\
x \in X .
\end{aligned}
$$

Definition 1.3. [Zadeh, 1965]

The standard union of fuzzy sets A and B is defined as

$$
\begin{aligned}
(\bar{A} \cup \bar{B})(x) & =\max \{\bar{A}(x), \bar{B}(x)\} \\
& =\bar{A}(x) \vee \bar{B}(x)
\end{aligned}
$$

For
all $x \in X$.

Definition 1.4. [Zadeh, 1965]

The standard complement of a fuzzy set A is defined

$$
\operatorname{as}(\neg \bar{A})(x)=1-\bar{A}(x)
$$

Definition 1.5. [Zadeh, 1965]
Let A be a fuzzy set of X, the support of A, denoted $S \square A \square$ is the crisp set of X
whose elements all have non zero membership grades in A, that is

$$
S(\bar{A})=\{x \in X: \bar{A}(x)>0\} .
$$

Definition 1.6. [Zadeh, 1965]

(α-cut) An α-level set of a fuzzy set A of X is a non fuzzy (crisp) set denoted by $A[\alpha]$, such that

$$
\bar{A}[\alpha]= \begin{cases}\{x \in X: \bar{A}(x) \geq \alpha\}, & \text { if } \alpha>0 \\ c l(S(\bar{A})) & , \text { if } \alpha=0\end{cases}
$$

Where $\operatorname{cl}(S(A))$ denotes closure of the support of A.

Theorem 1.7. [Chandra \& Bector, 2005]

Let A be a fuzzy set in X with the membership function $A(x)$. Let $[\alpha] A$ be the α-cuts of A and

$$
\text { Then } \bar{A}(x)=\sup _{\alpha \in[0,1]}\left(\alpha \wedge \chi_{\bar{A}[\alpha]}(x)\right), x \in X .
$$

Given a fuzzy set A in X, one consider a special fuzzy set denoted $\alpha A[\alpha]$ for $\alpha \in[0,1]$ whose membership function is defined as

$$
\bar{A}_{\alpha \bar{A}[\alpha]}(x)=\left(\alpha \wedge \chi_{\bar{A}[\alpha]}(x)\right), x \in X
$$

is called the level set of A. Then the above theorem states that the fuzzy set A can be
expressed in the form

$$
\bar{A}=\bigcup_{\alpha \in \Lambda_{\bar{A}}}(\alpha \bar{A}[\alpha])
$$

Where denotes the standard fuzzy union. This result is called the resolution principle of fuzzy sets. The essence of resolution principle is that a fuzzy set A can be decomposed in to fuzzy sets $\alpha A[\alpha], \alpha \in[0,1]$. Looking from a different angle, it tells that a fuzzy set A in X can be retrieved as a union of its $\alpha A[\alpha]$ sets $\alpha \in[0,1]$. This is called the representation theorem of fuzzy sets. Thus the resolution principle and the representation theorem are the two sides of the same coin as both of them essentially tell a fuzzy set A in X can always be expressed in terms of

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
its α-cuts without explicitly resorting to its membership function $A(x)$.

Definition 1.8. [Chandra \& Bector, 2005]

A fuzzy set A of a classical set X is called normal, if there exists an $x \in X$, such that $A(x)=1$. Otherwise A is subnormal.

Definition 1.9.[Zadeh , 1965]

A fuzzy set A of X is called convex, if $A[\alpha]$ is a convex subset of X, for all $\alpha \in[0,1]$. That is, for any $x, y \in A[\alpha]$, and for any $\lambda \in[0,1]$ then $\lambda(\lambda)[\alpha] x+1-y \in A$.

Definition 1.10. [Bushera, 2006]

A fuzzy set A whose $S(A)$ contains a single point $x \in X$, with () $1 A x=$, is referred to as a singleton fuzzy set.

Definition 1.11. [Bushera, 2006]
The empty fuzzy set of X is defined as $\Phi=\{(x, 0): \forall x \in X\}$

Definition 1.12. [Bushera, 2006]

The largest fuzzy set in X is defined as $I_{X}=\{(x, 1): \forall x \in X\}$

Definition 1.13. [Bushera, 2006]

The concept of continuity is same as in other functions, that say, a function f is continuous at some number c if
$f(x) f(c) x_{c}=\rightarrow \lim$ For all x in range of f, that require existing $f(c)$ and $f(x){ }_{x \rightarrow c} \lim$. In fuzzy set theory the condition will be $A(x) A(c)_{x c _-} \lim =\rightarrow$ with x and __ $c \in A$.

Definition 1.14. [Zadeh, 1965]
A fuzzy set A is said to be a bounded fuzzy set, if it α-cuts $A[\alpha]$ are (crisp) bounded sets, for all α $\in[0,1]$.

Definition 1.15. [Zadeh, 1965]

A fuzzy number A is a fuzzy set of the real line with a normal, (fuzzy) convex, and continuous membership function of bounded support.

Example 1.16. [Zadeh, 1965]

The following fuzzy set is fuzzy number approximately "5"= \{(3,0.2), (4,0.6),(5,1.0),(6,0.7),(7,0.1)\}.

Proposition 1.17. [Abdull Hameed, 2008]

Let A be a fuzzy number, then $A[\alpha]$ is a closed, convex, and compact subset of R, for all $\alpha \in[0,1]$. right hand side function which monotone decreasing and continuous.

Remark 1.18.

We shall use the notation $[\alpha][(\alpha)(\alpha)]{ }_{12} A=a, a$, where $[\alpha] A$ is an α-cut of the fuzzy number A, and $a:[0,1] \rightarrow R_{1},(\alpha)[\alpha]_{1} a=\min A$, is left hand side function which monotone, increasing and continuous $a:[0,1] \rightarrow R_{2},(\alpha)[\alpha]_{2} a=\max A$ is right hand side function which monotone decreasing and continuous.

Proposition 1.19. [Abdull Hameed, 2008]
$\overline{\text { If }} \alpha \leq \beta$, then $A[\alpha] \supset A[\beta \overline{]}$.
Proposition 1.20. [Abdull Hameed, 2008]

The support of a fuzzy number is an open interval $\left(a_{1}(0), a_{2}(0)\right)$.

Definition 1.21. [Zimmerman, 1995]
Let A be a fuzzy number. If $\} x A S=\mid$ (A) then A is called a fuzzy point and we use the notion

$$
A=x . \text { Let }
$$

$$
A=x \text { be a fuzzy point, it is easy to see that }[][,]\},[0,1]
$$

$\bar{A} \alpha=x x=x \forall \alpha \in$.
Here it may be remarked that the reason for
$\bar{A} * \bar{B}$ to be a fuzzy number, and not just a general
$\overline{\text { fuzzy set , is that } A} A$ and $B \bar{b}$ eing fuzzy numbers,
$\bar{A}[\alpha]=\left[\left(a_{2} \quad-a_{1}\right) \alpha+a_{1},\left(a_{2}-a_{3}\right) \alpha+a_{3}\right]$ for the $\quad \operatorname{sets} \bar{A}[\alpha], \bar{B}[\alpha],(\overline{A *} \bar{B}[\alpha]$, are all closed all $\alpha \in[0,1]$.

Example 1.23.[Zadeh , 1965]
$\bar{A}=(1,4,8)$ is triangular fuzzy number, where intervals for all $\alpha \in[0,1]$.
In particular
$\bar{A}\left[\begin{array}{ll}\alpha &](+) \bar{B}[\alpha]=\left[a_{1}(\alpha)+b_{1}(\alpha), a_{2}(\alpha)+b_{2} \quad(\alpha)\right]\end{array}\right.$
$\bar{A}[\alpha \quad](-) \bar{B}[\alpha]=\left[a_{1}(\alpha)-b_{2}(\alpha), a_{2}(\alpha)-b_{1}(\alpha)\right]$
Further, for fuzzy numbers A and \bar{B} in $\quad-\quad R$

$$
\begin{aligned}
& \bar{A}[\alpha] \cdot(\cdot)[\alpha]=1-\quad\left\lceil\min \left(a_{1}(\alpha) \cdot b_{1}(\alpha), a_{1}(\alpha) \cdot b_{2}(\alpha), a_{2}(\alpha) \cdot b_{1}(\alpha), a_{2}(\alpha) \cdot b_{2}(\alpha)\right), \Gamma_{\mid}^{+}\right. \\
& \left.\overline{A[\alpha] 0: B[\alpha]=}-\quad \begin{array}{l}
\max \left(a_{1}(\alpha) \cdot b_{1}(\alpha), a_{1}(\alpha) \cdot b_{2}(\alpha), a_{2}(\alpha) \cdot b_{1}(\alpha), a_{2}(\alpha) \cdot b_{2}\right. \\
\left.\min ^{\left(a_{1}(\alpha)\right.}(\alpha)\right\rfloor
\end{array}\right] \\
& \left.\left\lfloor\quad b^{b}(\alpha) b_{1}(\alpha) b_{2}(\alpha) b_{1}(\alpha) \hat{b}_{2}^{b_{2}} \quad(\alpha) b_{1}(\alpha) b_{2}(\alpha) b_{1}(\alpha)\right)\right\rfloor \\
& 0 \notin\left[b_{1}(\alpha), b_{2}(\alpha)\right]
\end{aligned}
$$

Example 2.2. [George, 1995]

2. Arithmetic Operations on Fuzzy Numbers

We will define the arithmetic operations on fuzzy numbers based on resolution principle (α cuts).

Definition 2.1. [George, 1995]
Consider two triangular fuzzy numbers A and
\bar{B} defined as
Let A and B be two fuzzy numbers
and $A[\alpha]=\left[a_{1}(\alpha), a_{2}(\alpha)\right], B[\alpha]=\left[b_{1}(\alpha), b_{2} \quad(\alpha)\right]$
be α-cuts, $\alpha \in[0,1]$ of $\quad \bar{A}$ and \bar{B} respectively. Then the operation (denoted anyof the arithmetic

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx

Now
$\left(\begin{array}{ll}--) \\ A+B \mid[\alpha]=[4 \alpha, 8 & -4 \alpha], \alpha \in[0,1]\end{array}\right.$
(distributivity).
The triple ($\Re, \operatorname{MIN}, \operatorname{MAX})$ is called lattice of fuzzy numbers. The triple $(\mathfrak{R}, M I N, M A X)$ can be

$$
\text { for } x \leq 0, x \geq 8 \text { for } 0<x \leq 4 \text { for } 4<x<8
$$

expressed as the pair (\Re, \leq), where \leq is a partial ordering defined as:
$\bar{A} \overline{\leq} B_{(}(i f f \operatorname{MIN} \mid \bar{A}, \bar{B})=A$
or, alternatively

3. Lattice of Fuzzy Numbers [George, 1995]

Let \mathfrak{R} denote the set of all fuzzy numbers. Then the operations MIN and MIAX arefunctions of the form $\mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ such that:-

ivity)

(associativity).
$A \leq B$ iff $M A X|A, B|=B \quad$ for any
$\bar{A}, B \in \overline{\mathfrak{R}}$.
Now, this partial ordering can be defined in terms of the relevant α-cuts:-
$\bar{A} \quad \bar{B}$ iff $\operatorname{MIN} \mid A[\alpha], \bar{B}[\alpha])=\bar{A}[\alpha], \bar{A} \leq \bar{B}$ iff $\operatorname{MAX}(\bar{A}[\alpha], B[\alpha])=B[\alpha]$
for any
$\bar{A}, B \in \Re \quad$ and $\alpha \in[0,1]$, where $\bar{A}[\alpha] \quad$ and $\bar{B} \overline{[} \alpha]$ are
closed intervals, then

$$
\operatorname{MIN}^{\operatorname{Min}}\left(\underset{A}{ }[\bar{\alpha}],-\bar{B}[\alpha]\left|=\left[\operatorname{MIN}\left(a 1, b_{1}\right), \operatorname{MIN}\left(a 2, b_{2}\right)\right], \operatorname{MAX}(A[\bar{\alpha}], \bar{B}[\alpha])\right|=\left[\operatorname{MAX}\left(a_{1}, b_{1}\right), \operatorname{MAX}\left(a_{2}, b_{2}\right)\right]\right.
$$

17
11
11
If we define the partial ordering of closed
intervals, that is
$\left[a_{1}, a_{2}\right] \leq\left[b_{1}, b_{2}\right]$ iff $a_{1} \leq b_{1}, a_{2} \leq b_{2}$
\bar{T} Then for any $A, \bar{B} \in \mathfrak{R}$, we have $\bar{A} \leq \bar{B}$ iff for all $\alpha \in[0,1]$. For example, we have in example $\overline{2.2}$ that $A \leq B$ since $A[\bar{\alpha}] \leq B[\bar{\alpha}]$ for all $\alpha \in[0,1]$. of fuzzy real numbers.

4. Fuzzy Families

Definition 4.1.

Theset of natural numbers is $N=\{1,2,3, \ldots\}$.

Theset of integer numbers is $Z=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

Theset of rational numbers is

$$
Q=\{b: a, b \in Z, b \neq 0\} .
$$

In other words, every terminating or recurring decimal is a rational number.
That is, every non terminating and non recurring decimal is an irrational number. The set of all irrational numbers is denoted by Q^{\prime}. The
set $R=Q Q^{\prime}$ is called the set of real numbers. Note ${ }_{i i} Z_{Z_{-}}$that:- If we substitute every real number
$\bar{r} \in R$ by a fuzzy number r, such that:-
If $r \in Z$, we replace r by a singleton fuzzy set r. The set of all fuzzy numbers $r, r \in Z$, will be
iii) Q_{0}
called the family of fuzzy integer numbers , and
denoted by \bar{Z}, where $\overline{\bar{Z}}=\{\ldots, \overline{2},-\overline{-1,1,2, \ldots}\}$. The family of all fuzzy natural numbers will be $\bar{N}=\{1,-\overline{2}, 3, \ldots\}$.
iii) Q_{+}

Because dense of rational and irrational numbers, we replace every rational r and irrational numbers
\bar{r}^{\prime} by a triangular fuzzy number $r=\left(r_{1}, r_{2}, r_{3}\right)$, it α -

The set of all fuzzy numbers $r^{-} r \in Q$ and the set
of all fuzzy numbers $r^{-\prime}, r^{\prime} \in Q^{\prime}$, will be called the family of fuzzy rational numbers and the family of

ISR Journals and Publications

Remark 4.2.

The fuzzy numbers mean here either triangular fuzzy number or singleton fuzzy set.

Definition 4.3.

=
From definition 1, we can define the following: i) Z_{0} the family of all non- fuzzy zero fuzzy integer numbers. That is, for all,
then $r \neq \overline{0}$.
the $\overline{\overline{~ f a m i l y ~}}$ of all negative fuzzy integer
numbers . That is, for all $r \in Z_{-}$, then $r<0$.
the family of all non- fuzzy zero fuzzy
rational nūmbērs. That is, for all $r \in Q_{0}$, then $r \neq 0$.
the $\overline{\overline{\text { family }}}$ of all positive fuzzy rational
numbers.That is, for all, then $r>0$.
iv) Q_{-}the family of all negative fuzzy rational numbers. That is, for all $r \in Q_{-}$, then $r=<\overline{0}$.
v) $\overline{R_{0}}$ the family of all non-fuzzy zero fuzzy real numbers. That is, for all $r \in R_{0}$, then $r \neq 0$.
vi) $\overline{\overline{R_{+}}}$the family of all positive fuzzy real numbers
.That is, for all $\bar{r} \in \overline{\overline{R_{+}}}$, then $\bar{r}>0^{-}$.
vii) $\overline{R_{-}}$the family of all negative fuzzy real numbers
.That is, for all $\bar{r} \in \bar{R}_{-}$, then ${ }^{-} r<0$.

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
International Journal of Advanced Research in Mathematics and Computer Applications Volume-1:
Issue-2 May 2013
vii) $\overline{\overline{N_{\bar{k}}}}$ the family of all fuzzy natural numbers
which are less or equal to \bar{k}, where
\bar{k} is a positive fuzzy integer
.Thus $\overline{N_{\bar{k}}^{\bar{\prime}}}=\{\overline{1,2}, \ldots, k\}$.
Definition 4.4. [Sharma, 1977]
The sets of the forms
$\{x \in R: a<x<b\},\{x \in R: a \leq x \leq b\},\{x \in R: a \leq x<b\},\{x \in R: a<x \leq b\}$ are
called open interval, closed interval, right half open interval and left half open interval, and denoted by respectively. The sets of
the forms
$\{x \in R: x>a\},\{x \in R: x<a\},\{x \in R: x \geq a\},\{x \in R: x \leq a\}$
are called rays and denoted by $(a, \infty),(-\infty, a)$,
$[a, \infty),(-\infty, a]$ respectively. The first two rays are
respe ctively. The last two families are called closed
fuzzy rays and will be denoted by $[a, \infty), \overline{(}-\infty, a \overline{]}$ respectively.

Definition 4.5. [Bhattacharya et al., 1989]

A set S is a collection of objects (or elements). If S is a set, and $x \quad$ is an element of the set S, we say that x belongs to S, and we write $x \in S$. If x doesn't belong to S, we write $x \notin S$.

Note:- Since the real numbers is essential to every set S, and the elements x of S is one forms of real numbers. Hence, if we have the family of fuzzy real numbers $\overline{\bar{R}}$, the fuzzy number \bar{x} will become one forms of fuzzy real numbers, and \bar{S} will be a family of fuzzy numbers x. called open rays, and the last two rays are called closed rays.

Note:- Suppose we have the family of fuzzy real numbers .The families of the forms

Definition 4.6. [Bhattacharya et al., 1989]

Let x, y be elements of a set S. The set $\{\{x\},\{x, y\}\}$ is called an order pair and is denoted by $(x, y$). x is called the first component (or coordinate), and y is the second component (or coordinate). will be called open fuzzy interval, closed fuzzy interval, right half open fuzzy interval and left half open fuzzy interval, and will be denoted
by $(a, \bar{b}),[\bar{a}, b \overline{]},(a, \bar{b}],[a, b)$ respectively, if the sets at degree α,
$\{x \in R: a<x<b\}, \quad\{x \in R: a \leq x \leq b\},\{x \in R: a \leq x<b\}$ $\left.{ }^{\alpha},{ }_{\alpha}^{\alpha} \in R:{ }_{\alpha}^{\alpha}<{ }_{\alpha}<x_{\alpha}{ }_{\alpha} \quad{ }_{\alpha} \quad{ }_{\alpha} \leq b\right\}$ are open interval , closed interval , right half open interval and left half open interval respectively, for all $\alpha \in[0,1]$.

The families of the forms $\{\bar{x} \in \overline{\bar{R}}: \bar{x}>\bar{a}\}$,
$\{\bar{x} \in \overline{\bar{R}}: \bar{x}<\bar{a}\},\{x \in \overline{\bar{R}}: \bar{x} \geq \bar{a}\},\{\bar{x} \in \overline{\bar{R}}: \bar{x} \leq \bar{a}\}$ will be called the fuzzy rays, if the sets at degree $\alpha,\left\{x \underset{\alpha}{\in} R: x{\underset{\alpha}{\alpha}}^{a_{\alpha}}\right\},\left\{x \in \underset{\alpha}{ } R: x<a_{\alpha}\right\}$.
are rays, for all
$\alpha \in[0,1]$.The first two families will be called open
fuzzy rays, and denoted by $(\bar{a}, \bar{\infty}),(-\bar{\infty}, \bar{a})$

Note:- Let x, y be fuzzy elements of the family of

fuzzy numbers S. The family of the families of fuzzy numbers $\{\{x\},\{x, y\}\}$ will be called an order
$\left.\begin{array}{l}\text { fuzzy } \\ \text { where }(\bar{x}, \bar{y}) \text { consists }\end{array} \quad \begin{array}{c}\text { will } \\ \text { of }\end{array} \quad \begin{array}{l}\text { bedenoted } \\ \text { allorder }\end{array} \underset{\text { pairs }}{(} \bar{x}, \bar{y}\right)$ at,
degree $\alpha,\left(x_{\alpha}, y_{\alpha}\right) \in x[\bar{\alpha}] \times y[\bar{\alpha}]=(x \times \bar{y})[\bar{\alpha}] \alpha$-cut of
will be called the first fuzzy component (or fuzzy coordinate), and y will be called the second fuzzy component (or fuzzy coordinate).

Definition 4.7. [Bhattacharya et al., 1989]

Let A, B be sets. The set of all order pairs $(x, y), x \in A, y \in B$ is called the Cartesian product of A and B, and is denoted by $A \times B$, where $A \times B=\{(x, y): x \in A, y \in B\}$.

ISR Journals and Publications

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
International Journal of Advanced Research in Mathematics and Computer Applications Vo
Issue-2 May 2013
Note:- If we have families of fuzzy numbers.
The family of all order fuzzy pairs
$(\bar{x}, \bar{y}), \bar{x} \in \overline{\bar{A}}, \bar{y} \in \overline{\bar{B}}$ will be called the fuzzy
Cartesian product of A and B, and will be denoted by $A \times B$ such that $A \times B=\{(x, y): x \in A, y \in$ $B\}$.
$=\quad==$

Definition 4.8. [Bhattacharya et al., 1989]

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
the fuzzy codomain respectively .The fuzzy
an $\overline{\text { fuzzy images under } f}[A]$.
Thus $\bar{f}[\bar{A}]=\left\{\begin{array}{l}=\overline{=} \overline{=} \\ y \in B: y=\end{array}\right.$
and of the fuzzy mapping f range of f is the family of f, and will be denoted by
$\bar{f}(\bar{x}), \bar{x} \in A \overline{\}}=\{\bar{f}(x): \bar{x} \in \vec{A}\}$.
Let A, B be sets, and let E be a subsets of \quad Then Eis called a relation from A to B. If $(x, y) \in \mathrm{E}$, then x is said to be in relation E to y, written $x \mathrm{E} y$.
Note that:-Let $\overline{\bar{A}}, \overline{\bar{B}}$ be families of fuzzy numbers, and let $\overline{\overline{\mathrm{E}}}$ be a subset of \quad Then $\overline{\overline{\mathrm{E}}}$ will be called a fuzzy relation from \bar{A} to \bar{B}. If $(\bar{x}, \bar{y}) \in \overline{\mathrm{E}}$, then \bar{x} will be said in fuzzy relation E 言 y, written $\bar{x} \overline{\overline{\mathrm{E}}} \bar{y}$.

Definition 4.9. [Bhattacharya, et al., 1989]

Let A, B be sets .A relation f from A to B is called a mapping (or a map or a function) from A to B, if for each element x in A, there is exactly one element y in B (called the image of x under $f \quad$), such that, x is in relation f to y. If f is a
mapping from A to B, we write $f: A \rightarrow B$.The sets A and B are called the domain and the codomain of
the mapping f respectively. The range of f is the set of all images under f, and is denoted by $f[A]$. Thus
$f[A]=\{y \in B: y=f(x), x \in A\}=\{f(x): x \in A\}$.
Note:-Let $\overline{\bar{A}}, \overline{\bar{B}}$ be families of fuzzy numbers. A
fuzzy relation \bar{f} will be called a fuzzy mapping (or a fuzzy map or a fuzzy function) from A to, if for
each fuzzy element \bar{x} in $\overline{\bar{A}}$, there is exactly one fuzzy element \bar{y} in \bar{B}. If \bar{f} is a fuzzy mapping from \bar{A} to \bar{B}, we will write $\overline{f:} \bar{A} \rightarrow \bar{B}$. The
families $\overline{\bar{A}}$ and $\overline{\bar{B}}$ will be called the fuzzy domain

Definition 4.10. [Bhattacharya et al.,1989]

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be mappings. Then the mapping $h: A \rightarrow C$ given by $h(x)=g(f(x))$ for all $x \in A$, is called the composite of f followed by g and is denoted by $g f$. The mappings f and g are called factors of the composite $h=g f$.

Note:- Let

$$
=\overline{\bar{f}: A \rightarrow} B \text { and } \overline{\overline{\mathrm{d}}} g \overline{\bar{\prime}} B \rightarrow C \text { be fuzzy }
$$

mappings. Thenthefuzzy mapping $\overline{\overline{h: A \rightarrow C} \overline{\text { given }} \text { by }} \overline{h(\bar{x})}=\overline{\underline{g}}(\bar{f}(\bar{x}) \underline{\underline{-}}$ for all $\bar{x} \in \overline{\bar{A}}$ will
be called the fuzzy composite of f followed by g, and will be denoted by $g f$. The fuzzy $\overline{\bar{m}}$ apping $\overline{\bar{g}} f$ and g will be called fuzzy factors of the fuzzy
composite $\overline{\bar{h}}=\bar{g} \overline{\bar{f}}$.
Definition 4.11. [Ruel, et al., 1974]
Complex numbers z can be defined as ordered pairs $z=(x, y)$ of real numbers x and y.Complex numbers of the form $(0, y)$ are called pure imaginary numbers. x and y are called the real and imaginary
parts of z respectively , and we
write $\operatorname{Re} z=x, \operatorname{Im} z=y$. In
particular, $(x, 0)+(0, y)=(x, y)$,
and $(0,1)(y, 0)=(0, y)$, hence $(x, y)=(x, 0)+(0,1)(y, 0)$.
Any order pair $(x, 0)$ is to be identified as the real number x, and so the set of complex numbers includes the real numbers as a subset. Let i denote the pure imaginary number $(0,1)$, we can write (x, y) as $(x, y)=x+i y$.We note that $i^{2}=(0,1)(0,1)=(-1,0)=-1$, so

Note:- If we have R the family of fuzzy real numbers. The fuzzy complex numbers \bar{z} will be defined as ordered fuzzy pairs $\bar{z}=(\bar{x}, \bar{y})$) of fuzzy numbers \bar{x} and ${ }^{-},{ }^{-} x$ and \bar{y} will
be called the fuzzy real and fuzzy imaginary parts
of \bar{z} respectively, we will write $f \operatorname{Re} \bar{z}=\bar{x}, f \operatorname{Im} z \overline{=} y$. The family of fuzzy complex numbers will be denoted by $\overline{\bar{C}}$.
Fuzzy complex numbers of the form $(0, y)$ will be called pure fuzzy imaginary numbers . In particular $(\bar{x}, \overline{0})+(\overline{0}, \bar{y})=(\overline{\bar{x}} \bar{y}), \quad$ and $(\overline{0}, 1)(\bar{y}, \overline{0})=(\overline{0}, \bar{y})$, hence
$\overline{x, y})=(\overline{x, 0})+\overline{0,1}) \overline{(y, 0})$. Because any order fuzzy pair is identified as the fuzzy real number . Hence the family of fuzzy complex numbers $\overline{\bar{C}}$ includes the family of fuzzy real numbers $\overline{\bar{R}}$ as subset .Let \bar{i} denote the pure fuzzy imaginary number , we can write the fuzzy complex numbers $x, y \quad$ as $x, y \quad=x+i y \quad$.Since $i \in i[\alpha] \alpha$-cut of (-,--) -
\bar{i}, for all $\alpha \in[0,1]$ is $i^{2}=-1$, then $i^{2} \in \overline{i^{2}} \underline{[\alpha]}$ of \bar{i}^{2},

Definition 4.12

From definition 8 , we can define C_{0} the family of all non- fuzzy zero fuzzy complex numbers. That is,
for all $\alpha \in[0,1]$. Hence $i^{2}=-1$. Also $i=-1$.

Note:- If we have \bar{R} the family of fuzzy real numbers . The n-dimensional fuzzy Euclidean space $\overline{\bar{R}}^{n}$ will be obtained, if we take the family of all ordered n-tuples of fuzzy real numbers, and written $\quad \overline{=}^{n}=\left\{\bar{x}=\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}\right): \overline{x_{i}} \in \mathbb{R}, i=1, \ldots, n\right\} \quad$, where $\bar{x}=\left(\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}\right)$ consists of \quad all ordered n - tuples of real numbers at degree α,
α-cut of it .
Definition 4.14. [Royden, 1966]
A sequence $/ x_{n} \backslash$ in a set \quad is a function from the set N to X. The value of the function at $n \in N$, being denoted by x_{n}.
Note:- If we have the family of the fuzzy numbers X, and the family of the fuzzy natural numbers $\overline{\bar{N}}$. The fuzzy sequence $/ \overline{x_{n}} \backslash$ in $\overline{\bar{X}}$ will be a fuzzy function from \bar{N} to $\overline{X . A}$ fuzzy sequence $\overline{x_{n}}$ consists of all ordered tuples (sequence) at degree α

, α - cut of it, where i is fixed belong to N. The fuzzy value of the fuzzy function at $\bar{n} \in N$, will be denoted by x_{n}. for all $\bar{z} \in \overline{\overline{C_{0}}}$, then $\bar{z} \neq \overline{0}$.

Definition 4.13. [Kreyszig, 1978]

The n-dimensional Euclidean
obtained, if we take the set of all ordered
space R^{n} is
n-tuples
real \quad rumbers,
$R^{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in R, i=1, \ldots, n\right\}$.

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx

Examples 4.15

$$
\begin{aligned}
& \text { 1) }\left(\dot{L}^{n}\right)=\binom{-1, \ldots,,^{n}}{-1,1,-1,1, \ldots,-1} \text {. } \\
& \text { 2) } \overline{3} \mid=\langle\overline{3}, \overline{3}, \ldots, \ldots
\end{aligned}
$$

Definition 4.16.[Sharma , 1977]

ISR Journals and Publications

Let $x=x_{n}$ and $\quad y=y_{n} \quad$ be two sequences in a set X. Then is said to be a subsequence of x if there exists a mapping $\varphi: N \rightarrow N$, such that :-
i) $y=x \varphi$
ii)For each n in N, there exists an m in N such that $\varphi(i) \geq n$ for every $i \geq m$ in N.
Note that:-If we have $\bar{x}=\overline{x_{n}}$, and $\bar{y}=\overline{y_{n}}$ be two fuzzy sequences in a family of fuzzy numbers $\overline{\bar{X}}$. Then \bar{y} will be said a fuzzy subsequence of $x=$, if

$$
==
$$

there exists a fuzzy mapping $\varphi: N \rightarrow N$, such that :i) $\dot{y}=\dot{x} \ddot{\varphi}$
${ }_{\text {ii) } \text { For each }} \quad \bar{n}$ in $={ }_{N}$, there exists an $\quad \bar{m}$ in \bar{N} such that $\bar{\varphi}(i) \geq n$ for every $i \geq m$ in N.

Example 4.17

$$
\text { If } \bar{x}=\left(\frac{1}{n+1}, \frac{1}{n}, \frac{1}{n-1}\right) \text { be fuzzy sequence in } \bar{R},
$$

$$
\text { then } y=1 \quad\left(\frac{1}{2 n}, \frac{1}{2 n-1}, \frac{1}{2 n-2}\right)
$$

is fuzzy subsequence of $-$
x. To show that, if we define $\varphi: N \rightarrow N$ such that $\bar{\varphi}=\overline{2} \bar{n}-1$ then
$\overline{(x} \bar{\varphi})(n)=\bar{x}(\bar{\varphi} \overline{(n)})=\bar{x}(\overline{2 n-1})=\left(1-\frac{1}{2 n 2 n-1}, \frac{1}{2 n-2)}\right)^{\text {will }}$.
Definition 4.18.[1986 , نعوم]
The Field Axioms:-Let the triple ($F,+$,) consists of the non empty set F, with two binary operations, the addition (+) and the multiplication (.) . The triple ($F,+$, , $)$ is said to bea field if satisfy the following:-

For all $x, y, z \in F,(x+y)+z=x+(y+z)$.
2) There is $0 \in F$ satisfy $x+0=0+x=x$, for all $x \in F .0$ is said to be the additive identity in F.
3)

$$
x+(-x)=(-x)+x=0 .(-x) \text { is said to be the }
$$ additivite inverse for x.

ere is $1 \in F$ satisfy $\cdot x=x \cdot 1=x$, for all $x \in F$. 1is said to be the multiplicative identity in F.
7) For all $x, y \in F$, then $x \cdot y=y \cdot x$, that is , the multiplication operation is commutative .
, there is
$x \cdot x^{-1}=x^{-1} \cdot x=1 . x^{-1}$ is said to be the multiplicative inverse for x.
9) For all $x, y, z \in F,(x+y) \cdot z=x \cdot z+y \cdot z$.
$10 \quad 1 \neq 0$.
Note that:-If we have a family of the fuzzy numbers .The triple $(\bar{F},+$,$) will be called the fuzzy$ field , if satisfy the following:
$x, y, z \in F,(x+y)+z=x+(y+z)$
2) There is $\dot{0} \in F$ satisfy $x+0=0+\dot{x}=x$, for all $\dot{x} \in F . \dot{0}$ will be called the additive fuzzy identity in \bar{F}.
3) For all $\overline{x \in F}$, there is $-\bar{x} \in \bar{F}$, such that

$$
\bar{x} \quad \overline{-x}_{x} \quad \bar{x}_{x} \quad \bar{x}_{x}^{-}=0 x^{-}
$$

fuzzy inverse for x.
4) For all $\bar{x}, \bar{y} \bar{F}{ }_{F}$, then $x+\bar{y}=\overline{y+x}$, ${ }^{-}$that is, the additivite operation $(+)$ is commutative on F.
6) There is $1 \in F \quad$ satisfy $\cdot x=x \cdot 1=x$, for all $x \in F .1$ be called themultiplicative fuzzy identity in F.
7)For all $\bar{x}, \overline{y \in F}$, then $\bar{x} \cdot \bar{y}=\bar{y} \cdot x$, that is, the multiplication operation (.)is commutative on F.

$$
\begin{aligned}
& \text { 8) For all }(\overline{x \neq 0}) \in F, \text { there is }_{-1}^{=} \quad x^{-1} \text { in , such that } \\
& x
\end{aligned} \begin{aligned}
& \text { will be called }
\end{aligned}
$$

9) For all
10) $1 \neq \underline{0}$.

Definition 4.19.[Balmohan , 2004]

A linear space (or a vector space) oves field $\mathrm{K}(R, C)$, is a non empty set X along \preccurlyeq

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
multiplieation $K \times X \rightarrow X$, sueh that , for all
additivite operation (+)is commutative .
5) For all $x, y, z \in F,(x \cdot y) \cdot z=x \cdot(y \cdot z)$.

ISR Journals and Publications

Volume-1: Issue-2 May 2013
2) $x+(y+z)=(x+y)+z$
3) There exists $0 \in X$, such that, $x+0=x$.

$$
\alpha \text {-cut of } Q\left(x_{2} \quad,-\overline{y_{2}}\right) \text { at degree } \alpha \text { is }
$$

4) There exists $-x \in X$, such that,
5) $a \cdot(x+y)=a \cdot x+a \cdot y$

$\frac{\left.\left.\left(y_{1, \alpha}\right), Q_{\alpha(2, \alpha}^{x}, y_{2, \alpha}\right)\right)=\overline{\Delta x}{ }_{\alpha}^{{ }^{2}+\Delta y{ }_{\alpha}^{2}}}{{ }^{2}+y_{2, \alpha}-y_{1, \alpha}}$
6) $(a \cdot l / \delta) x=a \cdot(b \cdot x)$
7) $1 \cdot x=x$

6)
Note that:-If we have a fuzzy field $\mathrm{K}(\overline{(R)} \bar{C})$

1) $\bar{x}+\bar{y}=\bar{y}+\bar{x}$
2) $\bar{x}+(\bar{y}+\bar{z})=(\bar{x}+\bar{y})+\bar{z}$
3)There exists $0 \in \bar{X}$, such that ,
3) There exists $-\bar{x} \in \overline{\bar{X}}$, such that, $\overline{x+}(-\bar{x})=\overline{0}$.
4)
5) $(\overline{a+}+\bar{b}) \cdot \bar{x}=\bar{a} \cdot \bar{x}+\bar{b} \cdot \bar{x}$
6) $(a \cdot-b) \cdot x=a \cdot\left(\frac{-}{-} \cdot x\right)$
7) $\overline{1} \cdot \bar{x}=\bar{x}$
5. The Fuzzy Metric and The Fuzzy Pseudo-Metric

Definition 5.1.[Thomas, 2000]

The distance between two points
$P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is
$d\left(P\left(x, y_{2}\right), Q(x, y)\right)=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{\left(x-x_{1}\right)^{2}+(y-y)_{1}^{2}}$
Note that:-If we have the fuzzy plane $R^{=}{ }^{2}$, and $\bar{P}\left(\overline{x_{1}}, \bar{y}_{1}\right), \overline{Q\left(x_{2}, y_{2}\right)}$ be two fuzzy ordered pairs in
\bar{R}^{2}. Let $x_{i, \alpha} \in \overline{x_{i}}[\alpha]$ of $\quad \overline{x_{i}}$, and $y_{i, \alpha} \in \quad \overline{y_{i}}[\alpha]$ of
\bar{y}
${ }_{i}, i=1,2$. The distance between two points
$P_{\alpha}\left(x_{1, \alpha}, y_{1, \alpha}\right) \in \bar{P}\left(\overline{x_{1}}[\alpha], \overline{y_{1}}[\alpha]\right)=\bar{P}\left(\overline{x_{1}}, \overline{y_{2}}\right)[\alpha] \alpha-$
cut of
and
α-cut of $\quad \begin{aligned} & \left.-\bar{x}\left(P_{1}, y_{1}\right), Q\left(\bar{x}_{2}, \bar{y}_{2}\right)\right)\end{aligned}$. Hence, the fuzzy distance between two fuzzy ordered

Definition 5.2. [Thomas, 2000]
The absolute value of a number x, denoted by x is defined by the formula
$|x| x \geq 0^{x=\{ }-x, x<0$
Note that:-If we $\overline{-} \overline{-} \overline{=}$ ave the family of fuzzy real numbers R, and $x \in R$. Let $x_{\alpha} \in x[\alpha]$ of x, then the absolute value of x_{α} at degree α will be defined by

$$
\left|x_{\alpha}\right|_{\alpha}=\left\{\begin{array}{l}
\left\{\begin{array}{l}
x_{\alpha}, \\
x_{\alpha} \geq 0 \\
\left.\right|_{\alpha} ^{-x} \alpha_{\alpha}, \alpha_{\alpha}^{<0}
\end{array}\right. \\
\hline
\end{array}\right.
$$

And $\left.\left.\left.\quad\right|_{0}\right|_{\alpha} \in \mid \bar{x} \llbracket \alpha\right]_{\alpha-\text { cut }}$ of $\overline{\mid \bar{x}} \mid$ Hence,
the absolute fuzzy value of \bar{x} is

$$
\overline{\left.\bar{x}\right|_{\mid-x,} ^{\mid-x}=\bar{x}<0} \left\lvert\, \begin{aligned}
& \left.\right|^{-}, x \geq 0 \\
& \mid
\end{aligned}\right.
$$

Definition 5.3.[Royden, 1966]

Let X be any set , a function $d: X \times X \rightarrow R$ is said to be a metric on X if:-

1) $d(x, y) \geq 0$, for all $x, y \in X$.
2) $d(x, y)=0$ iff $\quad x=y$.

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
International Journal of Advanneed Researeh in Mathematies and Computer Applications
Volume-1: Issue-2 May 2013
3) $d(x, y)=d(y, x)$, for all $x, y \in X$.
4) $d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in X$.

A set X with \quad a metric d is said to be a metric $\quad x_{\quad} \in \bar{x}[\alpha] \mathrm{of}_{x}$, ,
space, and may be denoted (X, d).
Note:- If we have a family of fuzzy numbers $\bar{X} \overline{\text {. A fuzzy function }}$
will be
called a fuzzy metric on X if satisfy:- for all

1) $\bar{d}(\bar{x}, \bar{y}) \geq \overline{0}$, for all $\bar{x}, \bar{y} \in \bar{X}$.
2) $d(x, y)=0 \quad$ iff $x^{-}=y^{-}$
all $x, y \in R$.

3) $d(x, y) \leq d, x, z)+d(z, y)$, for all $\underline{x, y}, z \in X$.

A family of fuzzy numbers X with a fuzzy metric $\bar{d} \quad$ will be called a fuzzy metric space, and
will be denoted .d Definition 5.4. [Sharma, 1977]

A function $d: X \times X \rightarrow R$ is called a pseudometric (semi-metric)for X iff it satisfies the axioms (1),(3),(4) of the first part of definition 5.3 , and the axiom $d(x, x)=0$, for all $x \in X$.
Note that:-A fuzzy mapping $\overline{\bar{d}}: \overline{\bar{X}} \times X \rightarrow R \overline{\overline{\text { is }}}$ said to be fuzzy pseudo-metric (fuzzy semi-metric) for $\overline{\bar{X}}$ iff it satisfies the axioms
(1),(3),(4) of the 5.3, and the axiom
\qquad second part of definition 5.3, and the $\left.\overline{d x}, \bar{x}^{-}\right) \quad \overline{=0}$, for all $x \in \bar{X}$. -
$\mid 1$
Remark 5.5

follows that every fuzzy metric is a fuzzy pseudometric but a fuzzy pseudo-metric is not necessarily fuzzy metric .
then

1) ${ }_{d}(x, y \quad) \geq 0$ for all $x \in x[\alpha]$ of $' x, y_{\alpha} \in \bar{y}[\alpha]$ of y.Thus $d '(x, y) \geq 0$, for all $\quad \begin{aligned} & \prime \prime \\ & x, y \in X\end{aligned}$

$\left.(\bar{x}, \bar{y})=\bar{x} \quad \bar{y} . s \quad \bar{x}-\bar{z}+L^{-}-\bar{y}=\bar{d} \bar{x}, \bar{z}\right)+\bar{d} z \quad y$

for all $\bar{x}, \bar{y}, \bar{z} \in \bar{R}$. Hence, (R, \bar{d}) is fuzzy metric space.

Remark 5.7

Above fuzzy metric will be called the fuzzy usual metric.

Example 5.8

Let the fuzz $\overline{\bar{y}} \overline{\text { mapping }} \overline{\bar{d}}: X \times X \rightarrow R$
4) $d_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=.\left.\left.\quad|\quad|\right|_{\alpha-z}\right|_{\alpha}+k_{\alpha}-y_{\alpha \alpha}$,
$=d_{\alpha}\left(x_{\alpha}, z_{\alpha}\right)+d_{\alpha}\left(z_{\alpha}, y_{\alpha}\right)$
for all $x \quad{ }_{\alpha} \in \bar{x}[\alpha] \mathrm{of}_{x}^{-}, y_{\alpha} \in \bar{y}[\alpha]$ of $y^{-}, z_{\alpha} \in \bar{z}[\alpha]$
of z.Thus \qquad

 defined by

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx

ISR Journals and Publications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
International Journal of Advanced Research in Mathematics and Computer Applications
Volume-1: Issue-2 May 2013
4) If $\quad x_{\alpha}=y_{\alpha} \quad$, then $d_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=0$.

Also $d_{\alpha}\left(x_{\alpha}, z_{\alpha}\right) \geq 0$ and $d_{\alpha}\left(z_{\alpha}, y_{\alpha}\right) \geq 0$.Thus

$$
d_{\alpha}\left(x_{\alpha}, y_{\alpha}\right) \leq d_{\alpha}\left(x_{\alpha}, z_{\alpha}\right)+d_{\alpha}\left(z_{\alpha}, y_{\alpha}\right) \text {.If } \quad x_{\alpha} \neq y_{\alpha} \text {, }
$$

then $d_{\alpha}{ }_{\alpha}, y_{\alpha} \quad{ }_{\alpha}$ is different from at
least one of and y_{α}, so at least one of
$d_{\alpha}\left(x_{\alpha}, z_{\alpha}\right)$ and $d_{\alpha}\left(z_{\alpha}, y_{\alpha}\right)$ must be equal to $1 . \leq$ sup
Thus $d_{\alpha}\left(x_{\alpha}, y_{\alpha}\right) \leq d_{\alpha}\left(x_{\alpha}, z_{\alpha}\right)+d_{\alpha}\left(z_{\alpha}, y_{\alpha}\right), \quad$ for $=d$
all $x_{\alpha} \in \bar{x}[\alpha]$ of $\quad \bar{x}, y_{\alpha} \in \bar{y}[\alpha]$ of $\bar{y}, z \alpha \in \bar{z}[\alpha]$ of \bar{z}.
Therefore $\quad \bar{d}(\bar{x}, \bar{y}) \leq \bar{d}(\bar{x}, \bar{z})+\bar{d} \bar{z}, \bar{y})$, for $\quad-\overline{a l l}_{\text {all }}, y, \bar{z} \in R$.
Hence $(\overline{\bar{x}}, \bar{d})$ is fuzzy metric space.
Remark 5.9
discrete metric .
-- - $\quad{ }_{d}(f, g)=\sup \overline{T_{f(x)-g}(x)} \leq \overline{\sup f(x}$
Example 5.10
Let X be
the family of all fuzzy functions
into itself. Let the fuzzy mapping $d: X \times \stackrel{0}{=}=\stackrel{-}{=} R \overline{\bar{b}}^{\prime} \mathrm{e}^{=}$ defined by
Example 5.11

$d \overline{\mathbf{(f}_{f}} \bar{g}, \sqrt{f}$

To show that d is fuzzy metric for X,then 1) $\left.d \underset{\alpha}{(} f_{\alpha}, g_{\alpha}\right)=\sup \left|f_{\alpha}(x)_{\alpha}-g_{\alpha}\left(x_{\alpha}\right)\right| \geq 0$, all $f_{\alpha}\left(x_{\alpha}\right) \in f(\bar{x})[\bar{\alpha}]$ of $\quad \overline{f(x)}, g_{\alpha}\left(x_{\alpha}\right) \in g(x)-\bar{n}^{n=1}$
for all $\bar{f}, \bar{g}, \bar{h} \in \bar{X}$. Hence $\left({ }_{(x, d \mid}^{-}\right)$is fuzz space.

2) $d_{\alpha}\left(f_{\alpha}, g_{\alpha}\right)=\sup f_{\alpha}\left(x_{\alpha}\right)-g_{\alpha}\left(x_{\alpha}\right) \Gamma_{a}=0 \quad$ iff $f_{\alpha}\left(x_{\alpha}\right)=g_{\alpha}\left(x_{\alpha}\right)$, for all $\left.f_{\alpha}\left(x_{\alpha}\right) \in \overline{f^{(x}}\right)[\alpha]$ of $\left.\bar{f} \bar{x}\right)$,

$$
x_{i, \alpha}=x_{i n, \alpha} \quad \overline{\in x[\alpha]}=x_{n} \quad[\alpha]_{\mathrm{of}}
$$

$$
\left.\bar{x}=\overline{x_{n}}, y_{i, \alpha}=y_{i n}, \alpha \in y[\alpha]=y_{n} \overline{\overline{[}}\right]_{\text {of }}
$$

3)

$$
\begin{aligned}
& =-\quad y^{\prime} \quad \bar{y} \\
& y=y_{n}, z_{i, \alpha}= \\
& i_{n, \alpha} \in z[\alpha]= \\
& z_{n}
\end{aligned}
$$

$\left.d_{\alpha}\left(f{ }_{\alpha}, g{ }_{\alpha}\right)=\sup \mid f_{\alpha}(x)_{\alpha}\right)-\left.g{ }_{\alpha}\left(x_{\alpha}\right)\right|_{\alpha} \sup$

$$
\begin{aligned}
& \text { for } \quad \operatorname{all} f_{\alpha}\left(x_{\alpha}\right) \in \bar{f} \bar{x} \\
& \left.\bar{f} \bar{x}), g_{\alpha}\left(x_{\alpha}\right) \in \bar{g} \bar{x}\right)[\alpha] \operatorname{of}_{g}-\left(\bar{x}, \quad h_{\alpha}\left(x_{\alpha}\right) \in \bar{h}(\bar{x})[\alpha]\right. \text { of } \\
& -\overline{{ }_{h}(x)} \\
& { }_{x} \in_{\bar{x}}^{-}[\alpha] \text { of }{ }_{x}^{-} \text {. Thus }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for all } f, g \in X \text {. } \\
& \text { 4) } d_{\alpha}\left(f_{\alpha}, g_{\alpha}\right)=\sup \mid f_{\alpha}\left(x_{\alpha}\right)-g_{\alpha}\left(x_{\alpha_{\alpha}}=\sup f_{\alpha}\left(x_{\alpha}\right)-h_{\alpha}\left(x_{\alpha}\right)+h_{\alpha}\left(x_{\alpha}\right)-g_{\alpha}\left(x_{\alpha}\right)_{\alpha}\right. \\
& \leq \sup \left(f_{\alpha}\left(x_{\alpha}\right)-h_{\alpha}\left(x_{\alpha}\right)+h_{\alpha}\left(x_{\alpha}\right)-g_{\alpha}\left(x_{\alpha}\right)\right) . \\
& f(x)-h\left(x_{1}+\sup h_{\alpha}(x)-g\left(x_{\alpha}\right.\right. \\
& \left.f, h a, d{ }_{a(\alpha)} h_{g}\right)
\end{aligned}
$$

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
, for all
1)
$f_{\alpha}\left(x_{\alpha}\right) \in \quad \bar{f}(x)[\alpha]$ of
$\bar{f} \bar{x}, g \quad(x \quad) \in \bar{g} \bar{x}[\alpha] \operatorname{of} \bar{g}(\bar{x}), x \in \bar{x} \quad[\alpha]$ of \bar{x}.Thus
$n=1$
Since $\sum \quad \infty \frac{\left.\right|_{i n, \alpha}-y_{i n, \alpha} \mid}{2^{n}\left[1+\left.\right|_{i n, \alpha} ^{X}-\left.y_{i n, \alpha}\right|_{\alpha}\right]} \epsilon$

ISR Journals and Publications
Page 13

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN NO: xxxx-xxx

International Journal of Advanced Research in Mathematics and Computer Applcations Vo Issue-2 May 2013

$\sum_{n=1}^{\infty} \frac{\overline{\overline{x_{n}}-\overline{y_{n}}}}{\overline{2^{n}}-+\sqrt{x_{n}-y_{n}}}$. Then, for all $\bar{x}, \bar{y} \in S$

$$
\text { we have } d(x, y) \overline{=}=\Sigma^{\infty} \underbrace{\infty}_{n=1} \frac{\overline{\overline{x_{n}}-\overline{y_{n}} \mid}}{\left.\overline{2^{n} \mid}\right|_{-1}+\left.\overline{\overline{x_{n}}-y_{n} \mid}\right|^{\prime}}-
$$

2)

Mathematics and Applications

$$
\begin{aligned}
& \text { for } \quad \text { all } \bar{x}, \bar{y} \in \overline{\bar{S}} \text {. } \\
& \text { 4) } d_{i, \alpha}=\left(x_{i, \alpha}, y_{i, \alpha}\right)=\sum_{n=1}^{\infty} \frac{\left.\right|_{i n, \alpha} ^{x}-\left.y_{i n, \alpha}\right|_{\alpha}}{2^{n}\left[1+{ }_{i n, \alpha}^{x}-\left.y_{i n, \alpha}\right|_{\alpha}\right]} \\
& \infty \quad=\sum \frac{\left.\right|_{i n, \alpha} ^{x}-z_{i n, \alpha}+z_{i n, \alpha}-\left.y_{i n, \alpha}\right|_{\alpha}}{2\left[1+\left.\right|_{i n, \alpha} ^{x}-z_{i n, \alpha}+z_{i n, \alpha}-y_{i n, \alpha} \mid\right]} \\
& { }_{n=1}^{\infty} \quad \leq \sum \frac{\left.\right|_{i n, \alpha} ^{x}-\left.z_{i n, \alpha}\right|_{\alpha}}{\left.2\left[1+\left.\right|_{i n, \alpha} ^{x}-z_{i n, \alpha}\right]_{k}\right]}+\sum_{n=12^{n}\left[1+\left.{ }^{n}\right|_{i n, \alpha}-\left.y_{i n, \alpha}\right|_{\alpha}\right]}^{{ }_{i n, \alpha}-\left.y_{i n, \alpha}\right|_{\alpha}} \\
& =d_{i, \alpha}\left(x_{i, \alpha}, z_{i, \alpha}\right)+d_{i, \alpha}\left(z_{i, \alpha}, y_{i, \alpha}\right) \\
& d_{i, \alpha}\left(x_{i, \alpha}^{x}, y_{i, \alpha}\right)=\sum_{n=1}^{\infty} \frac{\left.\right|_{{ }_{i n}} ^{x}-\left.y_{i n, \alpha}\right|_{\alpha}}{2^{n}\left[1+\left.\right|_{i n, \alpha} ^{X}-\left.y_{i n, \alpha}\right|_{\alpha}\right]}=0 \Leftrightarrow x_{i n, \alpha}=y_{i n, \alpha} \mathrm{f}
\end{aligned}
$$

or all $i, n \in N$.

Since
.Then
$\begin{aligned} & \bar{d}(\overline{x, y})=\sum_{n=1}^{\infty} \frac{\overline{\left|\overline{x_{n}}-\overline{y_{n}}\right|}}{\overline{2_{n}{ }_{n} \bar{T}+\overline{\overline{x_{n}}-\left.\overline{y_{n}}\right|_{n}}}=\overline{0} \Leftrightarrow \overline{x_{n}}}=\overline{y_{n}}, n \in N \\ &\lfloor x=\end{aligned}$
$\Leftrightarrow x=y$

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx

Since
of

$$
\begin{aligned}
3) d_{i, \alpha}=\left(x_{i, \alpha}^{\infty}, y_{i, \alpha}\right) & =\sum \frac{\left|x_{i n, \alpha}-y_{i n, \alpha}\right|_{\alpha}}{2^{n}\left[1+\left.\right|_{i n, \alpha} ^{x}-\left.y_{i n, \alpha}\right|_{\alpha}\right]}
\end{aligned}=\sum_{n=1}^{\infty} \frac{\left|y_{i n, \alpha}-x_{i n, \alpha}\right|_{\alpha}}{2^{n}\left[1+Y_{i n, \alpha}-\left.x_{i n, \alpha}\right|_{k}\right]}
$$

Since $d_{i, \alpha}\left(x_{i, \alpha}, y_{i, \alpha}\right) \in d(x, y)[\alpha]$ of $d(x, y)$, and

$$
d_{i, \alpha}\left(y_{i, \alpha}, x_{i, \alpha}\right) \in d\left({ }^{--}, x\right)[\alpha] \text { of } d\left({ }_{(y, x)}^{--}\right. \text {. Then }
$$

$$
\begin{aligned}
& \overline{=}= \\
&== \\
& d(y, x)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{d}\left({\overline{\bar{x}}, \bar{y}), d_{i, \alpha}\left(x_{i, \alpha}, z_{i, \alpha}\right) \in}^{\bar{d}(\bar{x}, z) \overline{[} \alpha] \text { of }} \quad \bar{d} \overline{\bar{x}}, \overline{\bar{z}} \overline{\text {, }}\right. \\
& \begin{array}{l}
\text { and } d_{i, \alpha}\left(z_{i, \alpha}, y_{i, \alpha}\right) \in \bar{d}(\bar{z}, \bar{y}) \\
\text { Then }
\end{array}
\end{aligned}
$$

for all $\bar{x}, \bar{y}, \bar{z} \in \overline{\bar{S}}$. Hence $\overline{\bar{d}}$ is a fuzzy metric
on $\overline{\bar{S}}$, that is , $\overline{\bar{S}} \bar{d}$ is a fuzzy metric space .
Example 5.12
Let $\left\{\left(x_{i}, \overline{\overline{d_{i}}}\right): i=1, \ldots, n\right\}$ be a finite class of fuzzy metric spaces. To show that each of the fuzzy

International Journal of Advanced Research in

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
International Journal of Advanced Research in Mathematics and Computer Applications Vol Issue-2 May 2013
functions $\stackrel{i}{d}$ and $\bar{\rho}$ defined as follows are fuzzy
metrics on the fuzzy product $\overline{\overline{X_{1}}} \times \ldots \times \overline{\overline{X_{n}}}$
i)
$\bar{d}\left(\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right), \overline{\left(y_{1}, \ldots, y_{n}\right)}\right)=\max \overline{d_{i}}\left(\overline{x_{i}}, \overline{y_{i}}\right), i=1, \ldots, n$
$\left.\left.\left.\underset{i=1}{i i)} \overline{d_{(}\left(x_{1}, \ldots,\right.} \overline{x_{n}}\right),\left(\overline{y_{1}}, \ldots, \bar{y}_{n}^{n}\right)\right)=\sum \overline{d_{i(}\left(x_{i}\right.}, \overline{y_{i}}\right)$
Then
i) Let
$\bar{x}=\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right), \bar{y}=\left(\overline{y_{1}}, \ldots, \overline{y_{n}}\right), \bar{z}=\left(\overline{z_{1}}, \ldots, \overline{z_{n}}\right) \in \overline{\overline{X_{1}}} \times \ldots \times \overline{\overline{X_{n}}}$
, then
 then max $\left.\overline{d_{i}} \overline{x_{i}}, \overline{y_{i}}\right) \geq \overline{0}$. Thus

$$
\bar{d}(\bar{x}, \bar{y}) \geq \overline{0}, \text { for all }
$$

2) For each $\overline{d_{i}}, i=1, \ldots, n$, we have $\overline{d_{i}}\left(\overline{x_{i}}, \overline{y_{i}}\right)=\overline{0}$ iff $\overline{x_{i}}=\overline{y_{i}}, i=1, \ldots, n$. It follows
that

$$
\max \overline{d_{i}\left(x_{i}, y_{i}\right)}=0 \stackrel{-}{\Leftrightarrow} x_{i}-\overline{y_{i}}, i=1, \ldots, n
$$

$$
\Leftrightarrow\left(\overline{x_{1}}, \ldots, \overline{x_{2}}\right)=\left(\overline{y_{1}}, \ldots, \overline{y_{n}}\right)
$$

$$
\Leftrightarrow x=y
$$

Thus $d(\bar{x}, \bar{y})=0$ iff $x=\bar{y}$.
for all $\bar{x}, \bar{z}, \bar{y} \in \overline{\overline{X_{1}}} \times \ldots \times \overline{\overline{X_{n}}}$. Hence,$d \overline{\overline{i s}}$ a fuzzy
metric for
ii) Let
$\bar{x}=\left(\bar{x}_{1}, \ldots, \overline{x_{n}}\right), \bar{y}=\left(\overline{y_{1}}, \ldots, \overline{y_{n}}\right), \bar{z}=\left(\overline{z_{1}}, \ldots, \overline{z_{n}}\right) \in \overline{\overline{X_{1}}} \times \ldots \times \overline{\overline{X_{n}}}$
, then

each $i=1, \ldots, n .$, for all
$x, \overline{y \in X_{1} \times \ldots} \times X_{n} \overline{\overline{-}}$
2) $\bar{\rho}(\overline{x, y})=\sum^{n} \overline{\rho_{i}}\left(x_{i}, \overline{y_{i}}\right)=\overline{0} \Leftrightarrow \overline{\rho_{i}}\left(x_{i}, y_{i}\right)=0, i=1, \ldots, n$
$i=1$
$\Leftrightarrow \quad \bar{x}_{i}=\bar{y}_{i}, i=1, \ldots, n$
$\Leftrightarrow \quad\left(x_{1}, \ldots, x_{n}\right)=\left(\overline{y_{1}}, \ldots, y_{n}\right)$
$\Leftrightarrow \quad x=y$
3) $\bar{\rho}(\bar{x}, \bar{y})=\sum^{n} \overline{\rho_{i}}\left(\overline{x_{i}}, \overline{y_{i}}\right)=\sum_{i=1}^{n} \overline{\rho_{i}}\left(\bar{y}_{i}, \bar{x}_{i}\right)=\bar{\rho}(\bar{y}, \bar{x})$
, for all $\bar{x}, \bar{y} \in \overline{X_{1}} \times \ldots \times \overline{X_{n}}$.
4) For each $\overline{\rho_{i}}, i=1, \ldots, n$, we have $\overline{\rho_{i}}\left(\overline{x_{i}}, \overline{y_{i}}\right) \leq \overline{\rho_{i}}\left(\overline{x_{i}}, \overline{z_{i}}\right)+\overline{\rho_{i}}\left(\overline{z_{i}}, \overline{y_{i}}\right)$.

Thus
$\left.\left.\bar{d}(\bar{x}, \bar{y})=\max \overline{d_{i}(} \overline{x_{i}}, \overline{y_{i}}\right)=\max \overline{d_{i}} \overline{\left(y_{i},\right.} \overline{x_{i}}\right)=\bar{d}(\bar{y}, \bar{x})$

$$
\begin{aligned}
\overline{\rho(x, y)})=\sum_{i=1}^{n} \overline{\rho_{i}}\left(x_{i}, \overline{y_{i}}\right) & \leq \sum_{i=1}^{n} \overline{\rho_{i}}\left(\overline{x_{i}}, \overline{z_{i}}\right)+\sum_{i=1}^{n} \overline{\rho_{i}} \overline{z_{i}} \\
& =\bar{\rho}(\bar{x}, \bar{z})+\bar{\rho}(\bar{z}, \bar{y})
\end{aligned}
$$

, for all $\bar{x}, \bar{y} \in \overline{X_{1}} \times \ldots \times X_{n}$.
4) For $\left.\left.\overline{\bar{F}} \quad \begin{array}{l}\text { each } \\ \overline{d_{i}}\left(\overline{x_{i}}, \overline{y_{i}}\right) \leq \overline{d_{i}}\left(\overline{x_{i}}, \ldots, n, \quad \text { we have }\right. \\ z_{i}\end{array}\right) \underline{\overline{d_{i}}}, \overline{z_{i}}, \overline{y_{i}}\right)$. Then --
$\max \bar{d}_{i}\left(x_{i}, \bar{y}_{i}\right) \leq \max \overline{d_{i}}\left(x_{i}, z_{i}\right)+\max d_{i}\left(z_{i}, y_{i}\right)$. Th us $d(x, y) \leq d(x, z)+d(z, y)$,

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
for all $x, y \in X_{1} \times \ldots \times X_{n}$. Hence , ρ is fuzzy
metric for $X_{1} \overline{\overline{\times \ldots}} \times X_{n} \overline{\overline{\text {. }}}$

References

[1] Abdull Hameed . K . On Fuzzy Markov Chains . Babylon University .M.Sc. Thesis. 2008.

ISR Journals and Publications

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx
International Journal of Advanced Research in Mathematics and Computer Applications Volume-1: Issue-2 May 2013
[2] Balmohan .V. Limaye . Functional Analysis.

Second Edition . Age International (P)Ltd Publisher . Indian . 2004 .

Kramosil I and Michalek statistical metric spaces,
[11] J , Fuzzy metric and Kybernetika ,11(1975),
[3] Bhattacharya. P . B . Jain . S . K . Nagaul . S . R
.Basic Abstract Algebra . Second Edition .University of Cambridge . London . 1989 .
[4] Bushera . H. Novel Perspective for Combining Fuzzy Logic with Wavelets and Neural Networks . Babylon University . M.Sc. Thesis . 2006.
[5] Buckley , J.J , and Eslami , E. Fuzzy Markov Chain :Uncertain Probabilities . Num 1(2005).
[6] Chandra .S. Bector .C. Fuzzy Mathematical Programming and Fuzzy Matrix Games. First
[12] Kreyszig .E . Introduction Functional Analysis with Applications. First Edition. John Wily . USA . 1978 .
[13] Grabiec M: Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27, 385-389 (1988).
[14] Kaleva O and Seikkala S: On fuzzy metric spaces, Fuzzy Sets and Systems 12, 225-229 (1984).
[15] Royden. H.L .Real Analysis .Sixth Edition .The Macmillan Company .New York . 1966. Edition . Berlin Heidelberg New York .Germany .

2005 .
[7] El Naschie MS. On the uncertainty of Cantorian geometry and two-slit experiment. Chaos,Solitons and Fractals 1998; 9:517-29.
[8] Erceg M A: Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69, 205-230 (1979).
George A and Veeramani P: On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64, 395-399 (1994).
[9] George A and Veeramani P: On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90, 365-368 (1997).
[10] George . E . K . BoYuan . Fuzzy Sets and Fuzzy
[16] Ruel.V. Churchil. James.W. Brown. Roger. F.Verhey. Complex Variables and Applications

First Edition McGraw . Hill . USA . 1974.
[17] Sharma . J . N . Topology . Fourth Edition .
Krishna Prakashan Mandir, Meerut (U.P) USA .
New York. 1977 .
[18] Thomas, Jr. Thomas Calculus . Eleventh Edition. Greg Tobin . Boston. 2000. -Zadeh. L . Fuzzy Sets : Information and Control .8.338-353.(1965)
[19] Zimmerman, H.J. Fuzzy Sets Theory and Its Applications. Third Edition. KluwerAcademic Publishers London . 1995

Logic Theory and Applications. First Edition .
Prentic Hall PTR . New Jersey . 1995.

ISR Journals and Publications

