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ABSTRACT—In this paper, we discuss some characteristics of a graph due to the properties of distance partition and 
 
establish  some  results  pertaining  to  the  structure  of  a  graph  G  with 2 .  Finally the  graphs  with  2 is 

characterized which is in fact proved in [15]. 
 

 
I. INTRODUCTION 

 
In this chapter, the distance partition of vertex set of graph G is defined, with reference to a vertex in it 

 

and with the help of the same, characterize the graphs with metric dimension two (i.e.   G   2 ). For a given 
 
 
graph G, there are a number of properties related to the distance between two vertices and have been widely studied by various 

authors.The result given in Proposition 1.1.4 was observed by Samir Khuiler et. al [8], and is an important tool in deriving several 

interesting results of the present chapter. The Corollary 1.2.5. owes to Samir Khuiler et. al [8] and Corollary 1.2.6. is due to 

Sooryanarayan [13] and Corollary 1.2.7. proceeds from Sooryanarayanan, Murali, Harinath [14]. 

 
1.1. Properties of Distance Partition 
 

 

In this section, we discuss some characteristics of a graph due to the properties of distance partition. 
 
 
Definition 1.1.1. Let G be a graph with vertex set V(G) and v be a vertex in it. Then { V0, V1, V2, . . ., Vk } is called 

 

a distance partition of V(G) with reference to the vertex v if V0 = { v } and Vt contains those vertices which are 

 

at distance i from v for 0 < i < k, where k is the eccentricity of v in G. The sets Vo, Vj, V2  ,..., Vk  are called 

distance partitite sets. 
 
Example 1.1.2. Look at the graph G given in the Figure 1.1.1. v2 v4 
 
 
 
 

  G  

 
 G  
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V1 V3 V5 V6 

  Figure. 1.1.1.  
Let v  V ( G ) . Then V0 = { v} }, Vi = { v2, v3 }, V2 = { v4, v5 }, V3 = { v6 } are called the distance partite sets of V(G) with reference to 
the vertex v,. 
Corollary 1.1.3. Let G be a graph with   G   2 and let {vh  v2  } be a metric basis of G. Then every pair of  
vertices Wj and w>2 from different distance partite sets are resolved by at least v7 and when uj and u2 are from same distance partite 
set then v2 resolves them. 

Proof: Let u1 and u2 are from same partite set say Vj with reference to the vertex v1. Since  
d(u1,v1) =j = d(u2,v1) and { v1, v2 } be a metric basis of G, v2 resolves u1 and u2. Now suppose w1 and w2 are 
from different distance partite sets say Vi and Vj respectively. 
Since d(w1, v1) =i 

and d(w2, v2) = j, w1 and w2 are resolved by v1. This is shown in 
Figure 1.1.2. 
 
 
 
 

 

Figure 1.1.2. 
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Proposition 1.1.4. In a graph G(V, E), consider any three vertices u, v and w such that  u v  E . If l = d(u, w) 

 

then d(v, w) is one of -1, and +1.    

Corollary 1.1.5. Given  any vertex v  V i  .  there  exist  at most three  vertices  in V i  1 ` adjacent  to  v,  where 

0  i  e ( v )  1 . Similarly there exist at most three vertices in V i  1 adjacent to v when 1  i  e ( v ) . 

1.2. Results Pertaining to the Structure of a Graph with 

 G 

  2  
 

 
This section establishes some results pertaining to the structure of a graph G with   G   2 . Further, let {V0, 
V1, V2, . . . , Vk} be the distance partition of G with reference to the vertex v1. The results of the Theorems 1.2.3 and 1.2.4 are due to 
Samir Khuller et. al [10] and a simple alternative proof using the concept of distance partition is given. 

 

Theorem 1.2.1 For any vertex v  V j there exists a shortest path of length between v1 and v. In fact, a shortest path from v1 to v 

contains exactly one vertex w 1  V j for 1  i  j , and the distance d ( w 1 , v )  j  i . 

 
Proof. The first part of the theorem is immediate from the definition of distance partite set and  v  V j  . Note 

 

that if u1  ,u2  are adjacent and u i   V i    for some i  1 , then u2  is in one of 

V i 1 , 

V and V i  1 . Suppose that a 

shortest path from v1 to  v  V j of length j consists of more than one vertices 
u 1 , u 

2  V i where 1  i  j . Then 

the shortest path is of the form 
v 1 , w 1 , ... , u 1 , .....u 2 , ... , 

v . Since d(v1  ,v)= j, j =length(v1- u1) + length(u1  -u2) + 

length(u2 - v) > d(v1, v2) +length(v2 - v). Since u 1 , u 2  V i we have  d ( v 1 , u 1 )  d ( v 1 , v 2 )  i .So there exist a path v 

1 to u2 of length i. Hence we obtain a path  ( v 1   u 2 )  ( u 2   v )  of length less than j from v1 to u this contradicts 

d ( v 1 , v )  j       
 

 

Theorem 1.2.2. If G is a graph with  G   2 and metric basis { v 1 , v 2 } then there exists a unique shortest path between v1 and 

v2. 

 
Proof. Let V0, Vj, V2,….. , Vk be the distance partite sets with reference to v 1   and  v 2   V j  . By Theorem 1.2.1. 

 

shortest path between v1 and v2 contains only one vertex from each distance partite set Vo, Vj, V2, …..., Vj-1. Suppose 
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that P1 andP2 are two shortest distinct paths between v1 and v2. Let Vi be the first partite set, while moving 

 

from v2 to v1, in which P1 and P2 pass through two distinct vertices u1 and u2 respectively. Then d(v2, u1) = d(v2 , u2) 

 

and hence u1 and u2 are not resolved  by any of v1 and v2, a contradiction to the fact that {v1, v2} is a metric basis of 

 

G, which is shown in Figure 1.2. 
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Theorem 4.2.3. Let { v1, v2 } be a metric basis of G with    G   then 

 

degree of both v1 and v2 is less than or equal to three. 
 
 
Proof. Let d(v1 v2) =   . Then any vertex adjacent to v1 is at distance  - 1, or   + 1 from v2. Since any pair of 

 

vertices that are adjacent to v1 are not resolved by v1, and are to be resolved by v2, the distances from these vertices 

 

to v2 are different. Hence the number of vertices adjacent to v1 does not exceed three. In other words, 

 

d e g v 1    3 .Similarly  d e g v 2   3 

 

Theorem1.2.4. Let { v1, v2 } be a metric basis G, where   G   2 .Consider distance partite sets V0, V1, V2, . . .,  
Vk with reference to v1.Any connected component of the graph induced by a distance partite set is a path and in fact, degree of any 
vertex in the graph induced by the distance partite set is at most two. 
 
 
Proof. Let Vj be a distance partite set and C be a connected compound in the induced graph (Vj). Further, let u be among vertices in C 
such that  d ( u , v 2 )  m in v V d ( v , v 2 ) . Since v2 resolves every pair of vertices in Vj, 

the choice of u is unique. Then any vertex adjacent to u say w, is at distance + 1 from v2, any vertex adjacent 

to w, say x, is at distance + 2 from v2 and so on. In fact, for any  v  C d(v2, v) = d(v2, u) + d(u, v). Thus 
the component C is a path and second part is trivial which is shown in Figure 1.2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

. 

ISRJournals and Publications Page 44



International Journal of Advanced Research in

  Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx

 

Corollary 1.2.5. A graph G with   G   2 cannot have K5 as a subgraph. 

 

Proof. As diameter of K5 is one, vertices of K5 are to be there in at most two consecutive distance partite sets. 

 

Then at least one among possible two sets contain three or more vertices of Ks5 which induces a cycle, which is 

 

not a path. Hence G cannot have K5. This is shown in Figure 1.2.3. . □ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2.3. 
 

 

Corollary 1.2.6. A graph G with   G   2 . Then for a triangle Tin G, if any, all the vertices of T cannot be at 

 

the same distance from v1 or v2. 

 

Proof. Let u, v, w be the vertices of a triangle. If all the vertices are at distance-say i from vi  and all these 

 

vertices lie in the same partite set say Vi. Then all these vertices induces a cycle in the same partite set, a 

 

contradiction to Theorem 1.2.4. 

Corollary 1.2.7. For any graph G with   G   2 the metric basis of G cannot have a vertex v of a subgraph K4 

 

of G. 
 
 
Proof. Let { v1, v2 } be a metric basis of G and  v 1   V ( K 4 ) . Consider the distance partite sets Vo, V1 of V(G) 

 

with reference to v1 .Then V1 has the other three vertices of K4 which induce a cycle, a contradiction to Theorem 

 

1.2.4, which is shown in Figure 1.2.4. 
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Figure 1.2.4. 
 
 
 

Theorem 1.2.8. The maximum degree of any vertex in a graph G with   G   2 is eight and it is realizable. 
 
 
Proof. Let G be a graph with   G   2 and let { v1 ,v2  } be a metric basis of G. By Corollary 1.1.5. and by 

 

Theorem 1.2.4, given any vertex  u  V i , it can be adjacent to at most three vertices each from  V i  1    and  V i  1 

 

and at most two vertices from Vi. Hence the degree of u is at most eight. In the following Figure1.2.5, a graph G with  G   2 is 

observed and a vertex of G having degree eight and all the vertices are labeled 

with their distance from v2. 
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Figure 4.2.5. 

 

Remark 1.2.9. The above Theorem gives an upper bound for degree of any vertex in a graph G with   G   2 

 

Theorem 1.2.10. Let ( v1  v2) be a metric basis of G, where   G   2 . Then G cannot have K5  — e as a 

 

subgraph. 
 

 

Proof: Since the graph induced by any distance partite set can have only components of paths and isolated vertices, vertices of K5 — e 

are distributed as three (u1, u2, u3) in one distance partite set, say Vi and other two (u4, 

 
u5) in an adjacent distance partite set, V i 1 o r V i  1 as shown in the Figure 1.2.6, in which case two of the three vertices u1, u2, u3 are 

of degree three in K5 - e and the remaining vertices are of degree four in K5 - e. Without loss of generality, assume that u1 and u3 are of 

degree three and u2,u4, u5 are of degree four in K5 - e, as shown in the 

Figure 1.2.6. Note that u1, u2, u3 are pair wise resolvable by v2 and so are u4 and u5. Now consider u4 which is 

adjacent to all the remaining four vertices and let d(v2, v4) = Further, as u1, u2 and u3 are resolved pair wise 

by v2 and are adjacent to u4, d(v2, uj), (j = 1, 2, 3) takes distinct values among + 1,   t, - 1. Since u5 is also 

adjacent with all three vertices u1, u2 and u3 , we get d(v2 ,v)= ,a contradiction to the conclusion that u4 and u5 

are resolved by v2    
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Figure 4.2.6. 
 
 
 
Remark. 1.2.11. It is clear that neither K5 nor K5 ~ {e} can be a subgraph of a graph with metric dimension two. 

 

So it is of natural curiosity how further smaller subgraph of K5  can be excluded from being a subgraph of a 

 

graph from the class of graphs with metric Dimension two in the following Figure 1.2.7., we realize that K5-2e 

 

could be a subgraph of some graph G with    G   2 . 
 
 
 

 

Theorem 1.2.12. if G is a graph with   G   2 . Then G cannot have 

 

K 3,3 as a subgraph. 

 

Proof: A graph G with   G   2 .   Can have K 3,3   is   present as sub graph   and that there is a metric basis 

 

of size two. All vertices have been given distinct coordinates .Let the vertices of K 3,3 be {v1, v2, v3}and {v4, v5, 

 

v6}.with edges going across from one set of vertices to the other .Among these six vertices, let v4    have the 

 

smallest first coordinates (a,b)..Vertices {v1, v2, v3} must all have first coordinate ei8ther a or a+1 . 
 

 

Suppose all three are a+1. The second coordinates must be 

 

{b - 1, b, b + 1} (in some order) this forces the second coordinates of   vertices v5.and v6 to be b .There 

 

is no way assign distinct coordinates to vertices {v4, v5, v6}.. 
 

 

Suppose all three are a. The second coordinates must {b - 1, b, b + 1} (in some order). There are two vertices with coordinates (a, b). 

Suppose vertices vj and v2 have first coordinate a, and vertex v3 has first coordinate a + 1. Vertices Vj and 

 

v2 have their second coordinates {b - 1, b, b + 1} in some order. Clearly the second coordinate of vertices v5 and 

 

v6 is b. There is no way to assign distinct coordinates to vertices {v4, v5, v6}. 

 

Suppose vertices v; has first coordinate a, and vertices v2 and v3 have first coordinate a + 1. The coordinates of 

 

the vertex v/ can be either (a, b + 1) or 
 

 

(a, b- 1). 
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Case 1. Coordinates of the vertex v/ is (a, b + 1). 

 

In this case, the vertices v2 and v3 have to choose their second coordinates. The choices are {b, b - 1} or 

 

{b, b + 1} or {b + /, b - 1}. We consider each case separately. 

 

(i) The second coordinate of v5 must be b. There is no choice for the first.  

 

(ii) In this case vertices v5 and v6 have to pick from {a, a + 1} for the first coordinate and {b, b + 1} for the second coordinate. Since 

there are a total of four distinct choices and vertices v1, v2 and v3 have used up three of them we cannot assign coordinates to 

v5 and v6.  

 
(iii) The second coordinate of v5 and v6 must be b. There is no choice for the first.  

 

Case 2. Coordinates of the vertex v1 is (a, b~ 1). 

 

In this case, vertices v2 and v3 have to choose their second coordinates. The choices are {b, b -1} or {b, b + 

1} 

 

or {b + 1, b - 1}. We consider each case separately. 
 
 
(i) The choices for vertices v5  and v6  are {a, a + 1} for the first coordinate and {b - 1, b} for the second coordinate. 

 

Since there are a total of four distinct choices and vertices v1, v2 and v3 have used up three of them we cannot assign 

 

coordinates to vertices v5 and v6. 

ISRJournals and Publications Page 49



International Journal of Advanced Research in

  Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014,ISSN_NO: xxxx-xxx

 

(ii) The second coordinate of v5 must be b. There is no choice for the first. 

 

(iii) The second coordinate of v5 must be b. The first coordinate is forced to be   a + 1. There is no choice for node v6. 
 
 
 
 

 

Theorem 4.2.13. Let { v1, v2} be a metric basis of G, where   G   2 . Let e(v1) = k and  
V ( G 
) = n. Then 

eccentricity of the second resolving vertex v2  is greater than or equal to 

 n  

4  

, k 

 

1 , where [ x] is the 

  

  

 
 k  

1       
 

integer part of the number x. 
 

 

Proof. Let e(v1) = k and { V0, V1, . . ., Vk) be the distance partition of V(G) with reference to v1;. Then there is at 

 

 
 
 
 

 

 

 
 
 
 

Theorem 1.2.14. Let G be a graph with
 2 and {v1, v2 }be a metric basis of G. Let P be 
the Petersen 

 
graph. Then neither of v1 and v2 are in V(P). Further, if eccentricity of any v1; and v2 is not more than three, then 
P cannot be a subgraph of G. 

 

Proof: Consider distance partite sets {V0, V1, V2, . . . , Vk} with reference to v1. If 

 
least six vertices of V(P) which induces a cycle in V2. This is a contradiction. Hence  v 1   V ( P ) . Similarly 

 

v 2   V ( P ) .Suppose that P is a subgraph of G and e(v2) = 3. Now consider distance partite sets with reference to 

 

v1. Then at most one Vj which contains v2  may have four vertices and the remaining Vi   have no more than 

 

three vertices. As v 1  V ( P ) and diameter of P = 2, V(P) is distributed among three Vj’s such that one having four vertices 

of V(P) 

 

v 1   V ( P ) then V2 consists of at 

 

 G 
 

least one distance partite set with number of vertices 

greater than or equal to 

 n  
4  

, k 
 

1 

  

  

 
 k  

1    
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and other two having three each. This implies that v 2   V ( P ) which is a contradiction. 

Theorem 1.2.15. Let G be a graph with  G   2 then there is no connected subgraph H of G such that 

    

d ( H )  m  1 , where m is cardinality of V(H).         
Proof. Consider a metric basis {v1, v2} of G, where   G   2   , and distance partition {V0, V1, V2, . . . , Vk} of 

 

V(G) with reference to among the basis elements, say v1. Let H be any connected subgraph of G. Any pairs of 

 

vertices, among vertices of H and in the same partite set, say Vj, are resolved by v2. Since the distance between 

 

any pair  of  vertices for {vn\vn  V(H)    Vj} is not more than d(H), d(v2, vn ) takes distinct values among 

, +1,, . . . ,+  d(H) where 

 m in v  H 

 v 
{ d ( v , 
v 2 )} .. So, the cardinality of H  Vj is at most d(H) + 1. 

   j   

 

Further, the vertices of H could be distributed among at most d(H) + 1 consecutive Vi’ s. Hence the cardinality 

 

of H is at most (d(H) + 1) (d(H) + 1).     

That is m   (d(H) + l)2, where m is cardinality of V(H). Therefore 

 

 d ( H ) . This proves the 

 

m  
1  

result.     
 
 

Lemma 1.2.16. Let G be a graph with   G   2   and {v1, v2} be a metric basis of G. Further, let {V0, V1, 
V2, . . . ,Vk} be the distance partition of V(G) with reference to the vertex v1. Then every distance partite set can have at most two 
vertices more than the maximum possible cardinality of preceding distance partite set. 

 

Proof. Consider a distance partite setV i , 

a n d  V i 

1 has m vertices. Let d(v2, uj) =   -i, - i + 1, ...,   -i + m1, 

(m1    m), where  u j   V i 1    .As every vertex in Vi , is adjacent to one or the other vertices in V i  1 , d(v2, wi) where 

wi   Vi can take one of the distinct values -i-1, - i, . . . ,- i + m1 + 1. Thus if V,<. j has a maximum of 

 
m1 +1 vertices then Vi has a maximum of m1 + 1 +2 vertices. 

 

Theorem 1.2.17. Let G be graph with   G   2 and { v1,  v2  } be a metric basis of G. Further, let { V0, V,, 

 

V2, . . . , Vk}be the distance partition of V(G) with reference to one of the vertices in the metric basis. Then 
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maximum number of vertices in any distance partite set, say Vi for  0  i  k is (2i + 1). 

 

Proof. Proof is by mathematical induction and induction is applied on i, the suffix of Vt for 0  i  k . The result 
 
 
is true for i = 0 and 1.Assume that the result true for i. That is, Vi has at most (2i +1) vertices. By the previous Lemma 1.2.16., Vi + 1 

can have at most the vertices more than (2i+1) vertices. Hence Vi +1 can have at most 

2i+3 = 2(i + 1) + 1 vertices. By mathematical induction the result follows for   any   positive   integer 

i, whichis shownin Figure 1.2.8   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.2.8. 

 

1.3. Characterization of Graphs with Metric Dimension Two 

 

In this section we determine the characterization of graphs with metric 

dirnension two. 

Theorem 1.3.1. Let G be a graph which is not a path with V(G) = { v1, v2, . . . , vn} and { Vi0, Vi1 . . . , Vik} be the 

 

distance partition of V(G) with reference to the vertex vi, where ki is the eccentricity of vi  1  i  n . The metric 
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dimension of G is 2 if and only if there exist vertices vi and vj such that 
V ik   V jl  1  for every k and with 

1  k   e ( v i )  and 1  l  e ( v j ) .   

 

Proof. Let G be a graph which is not a path with V(G) = { v1 v2, . . ., vn} and { Vi0, Vi1 . . . , Vik} be the distance 

 

partition of V(G) with reference to the vertex vi, where ki is the eccentricity of vi 1  i  n . Let  G   2 . We  

have to prove that there exist vertices vi, and vj such that 

 

V ik  V jl 

 

 1  for every k and with 1 

 k   e ( v i )  

and 

 

   

         

1  l  e ( v j ) . Suppose not, for given vp and vr , V p 
q 

 V 

r 
s 

  

 

1 for some pq and rs  implies that there exist at least  

            

 

two vertices, say u1 and u2 in  V p q    V rs   such that d(vp, u1) = d(vp, u2) = q and d(vq, u1) =d(vq, u2) = s and hence 

u1 and u2 are not resolved by both vp and vr so, 
V 

p q   V r s   1  for all pq and rs implies no pair of vertices vp and  

vr resolves V(G), in other words  G   2 .                 

        

Conversely if there exist vp  and vr such that V p 

q 

 V 

r 

s 

 1   for all pq and rs, then given any pair of  

                

vertices w1  and w2  from V(G)   we have 
w 1   V p 

q 

1 

 V 

r s 

1 

 and  w 2 

 V p q 2   V 

r s 

2 

where at least pq1  is different  

              

from pq2 or rsl    is different from rs2. This implies that w1 and w2 are resolved by at least one of vp  and vr. So  

               

  G  

 2   and in fact,   ( G )  2 as G is not a path.              
 

 

Illustration (i). Look at the graph G given in Figure 1.3.1. Let V(G) = { v1, v2, v3, v4 }. Then 

 

V10 = { v1 }, V11 = { v 2 , v 4 } V 1 2 = { v 3 } , 
 
 
V20 = { v2 }, V21 = { v1, v3, v4 }, 

 

V30 = { v3 }, V31 = { v2, v4}, V32 = { v1 }, 
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V40 = { v4 }, V41 = { v1, v2, v3}  are the distance partite sets with reference to each vertex in V(G).Since the vertices 

 

v1,  v2  V(G)  such  that 
V 1 k 

 V 

2 l  1   for  every  k  and with  1  k 
 e ( v1 

) and  1  l  e ( v 2 ) ,  we  have 

 ( G )  2 .        

(ii). Consider the graph G given in Figure 1.3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4 v5 

 
Figure 1.3.2. 

 

Let V(G) = { v1, v2, v3, v4, v5, v6 }. Then 

 

V10 = { v1}, V11 = { v6}, V12 = { v2, v3, v4, v5 }, 

 

V20 = { v2 }, V21 = { v6}, V22 = { v1, v3 v4, v5 }, 

 

V30 ={v3}, V31 ={v6}, V32 = { v1, v2, v4, v5 }, 

 

V40 = { v4 } ,V41 = { v5, v6 }, V42 = { v1, v2, v3 }, 

 

V50 = { v5 }, V51 = { v4, v6 }, V52 = { v1, v2, v3 }, 

 

V60 = { v6 }, V61 = {v1, v2, v3, v4, v5) 

 

are the distance partite sets with reference to each vertex in V(G). 

 

Since  no two  vertices  vi   ,vj  V(G)  such  that 
V 

i k 
 V 

j l  1   for  every  k  and with  1  k 

 e ( v i )   

and 
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1  l  e ( 

v j ) ,we have   ( G )  2 .       
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