Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

GRAPHS WITH METRIC DIMENSION TWO

Dr.K.Renganathan¹. Dr.R.Srinivasan²

 $\begin{array}{c} \text{SSM Institute of engineering and Technology,Dindigul}^1 \\ \text{Gongunadu college of engineering and Technology,Thottiam}^2 \\ \underline{\text{renga81@gmail.com}, srinivasanmaths@gmail.com}} \\ \beta(G) \end{array}$

 $\beta(G)$

ABSTRACT—In this paper, we discuss some characteristics of a graph due to the establish some results pertaining to the structure of a graph G with $\Box \Box 2 \Box$. characterized which is in fact proved in [15].

properties of distance partition and Finally the graphs with \Box 2 is

I. INTRODUCTION

In this chapter, the distance partition of vertex set of graph G is defined, with reference to a vertex in it

and with the help of the same, characterize the graphs with metric dimension two (i.e. $\Box \Box G \Box \Box 2$). For a given

graph G, there are a number of properties related to the distance between two vertices and have been widely studied by various

authors. The result given in Proposition 1.1.4 was observed by Samir Khuiler et. al [8], and is an important tool in deriving several

interesting results of the present chapter. The Corollary 1.2.5. owes to Samir Khuiler et. al [8] and Corollary 1.2.6. is due to

Sooryanarayan [13] and Corollary 1.2.7. proceeds from Sooryanarayanan, Murali, Harinath [14].

1.1. Properties of Distance Partition

In this section, we discuss some characteristics of a graph due to the properties of distance partition.

Definition 1.1.1. Let G be a graph with vertex set V(G) and v be a vertex in it. Then $\{V_0, V_1, V_2, \ldots, V_k\}$ is called

a distance partition of V(G) with reference to the vertex v if $V_0 = \{v\}$ and V_t contains those vertices which are

at distance *i* from v for 0 < i < k, where *k* is the eccentricity of v in *G*. The sets *Vo*, *Vj*, *V*₂,..., *V_k* are called *distance partitite sets*.

Example 1.1.2. Look at the graph G given in the Figure 1.1.1. v2 v4

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Let $v \square V(G)$. Then $V_0 = \{v_1\}$, $V_i = \{v_2, v_3\}$, $V_2 = \{v_4, v_5\}$, $V_3 = \{v_6\}$ are called the distance partite sets of V(G) with reference to the vertex v,.

Corollary 1.1.3. Let *G* be a graph with $\Box \Box G \Box \Box 2$ and let $\{v_h \ v_2\}$ be a metric basis of *G*. Then every pair of vertices *Wj* and w>2 from different distance partite sets are resolved by at least v_7 and when *uj* and u_2 are from same distance partite set then v_2 resolves them.

Proof: Let u_1 and u_2 are from same partite set say V_j with reference to the vertex v_1 . Since $d(u_1,v_1) = j = d(u_2,v_1)$ and $\{v_1, v_2\}$ be a metric basis of G, v_2 resolves u_1 and u_2 . Now suppose w_1 and w_2 are from different distance partite sets say V_i and V_j respectively.

Since $d(w_1, v_1) = i$

and $d(w_2, v_2) = j$, w_1 and w_2 are resolved by v_1 . This is shown in Figure 1.1.2.

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Proposition 1.1.4. In a graph G(V, E), consider any three vertices u, v and w such that $u v \square E$. If l = d(u, w)

then d(v, w) is one of -1, and +1. **Corollary 1.1.5.** Given any vertex $v \square V_i$. there exist at most three vertices in $V_{i \square 1}$ adjacent to v, where $0 \square i \square e(v) \square 1$. Similarly there exist at most three vertices in $V_i \square 1$ adjacent to v when $1 \square i \square e(v)$. **1.2. Results Pertaining to the Structure of a Graph with** $\square \square 2$

This section establishes some results pertaining to the structure of a graph G with $\Box \Box G \Box \Box 2$. Further, let $\{V_{0}, V_{1}, V_{2}, \ldots, V_{k}\}$ be the distance partition of G with reference to the vertex v_{1} . The results of the Theorems 1.2.3 and 1.2.4 are due to Samir Khuller et. al [10] and a simple alternative proof using the concept of distance partition is given.

Theorem 1.2.1 For any vertex $v \square V_j$ there exists a shortest path of length between v_i and v_j . In fact, a shortest path from v_1 to v_j contains exactly one vertex $w_1 \square V_j$ for $1 \square i \square j$, and the distance $d(w_1, v) \square j \square i$.

Proof. The first part of the theorem is immediate from the definition of distance partite set and $v \square V_i$. Note

that if u_1 , u_2 are adjacent and	$u_i \square V_i$ for some	$i \square 1$, then u_2 is in one of	$V_{i \Box 1}, V$	and	V $_{i \ \square \ 1}$. Suppose that a	
shortest path from v_1 to $v \square V_j$	of length j consists of more than one vertices		<i>u</i> ₁ , <i>u</i> ₂		where $1 \square i \square j$. Then	
the shortest path is of the form	$v_1, w_1, \dots, u_1, \dots, u_2, \dots, v_n$ v_n Since $d(v_1, v) = j, j = length(v_1, u_1) + length(u_1, u_2)$				$v_{1-}u_1$ + length($u_1 - u_2$) +	
$length(u_2 - v) > d(v_1, v_2) + length(v_2 - v)$. Since u_1 , u_2		$\Box V_i$ we have $d(v_1, u_1) \Box d(v_1, v_2) \Box i$. So there exist a path				
1 to u_2 of length i. Hence we obtain a p	ath ($v_1 \square u_2$) \Box ($u_2 \Box v$) of len	gth less t	than j fro	m v ₁ to u this contradicts	

 $d\,(\,v_{\,1}\,,v\,)\,\square\,j$

Theorem 1.2.2. If *G* is a graph with $\Box \Box G \Box \Box 2$ and metric basis { v_1 , v_2 } then there exists a unique shortest path between v_1 and v_2 .

Proof. Let V_0 , V_j , V_2 ,, V_k be the distance partite sets with reference to v_1 and $v_2 \square V_j$. By Theorem 1.2.1.

shortest path between v_1 and v_2 contains only one vertex from each distance partite set Vo, V_j , V_2 , ..., V_{j-1} . Suppose

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

that P₁ and P₂ are two shortest distinct paths between v_1 and v_2 . Let Vi be the first partite set, while moving from v_2 to v_1 , in which P₁ and P₂ pass through two distinct vertices u_1 and u_2 respectively. Then $d(v_2, u_1) = d(v_2, u_2)$ and hence u_1 and u_2 are not resolved by any of v_1 and v_2 , a contradiction to the fact that $\{v_1, v_2\}$ is a metric basis of *G*, which is shown in Figure 1.2.

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Theorem 4.2.3. Let $\{v_1, v_2\}$ be a metric basis of *G* with $\Box \Box G \Box$ then

degree of both v_1 and v_2 is less than or equal to three.

Proof. Let $d(v_1 v_2) = .$ Then any vertex adjacent to v_1 is at distance - 1,

or + 1 from v_2 . Since any pair of

vertices that are adjacent to v_1 are not resolved by v_1 , and are to be resolved by v_2 , the distances from these vertices

to v_2 are different. Hence the number of vertices adjacent to v_1 does not exceed three. In other words,

 $d e g v_1 \square 3$.Similarly $d e g v_2 \square 3$

Theorem1.2.4. Let $\{v_1, v_2\}$ be a metric basis *G*, where $\Box \Box G \Box \Box 2$. Consider distance partite sets V_0, V_1, V_2, \ldots , V_k with reference to v₁. Any connected component of the graph induced by a distance partite set is a path and in fact, degree of any vertex in the graph induced by the distance partite set is at most two.

Proof. Let V_j be a distance partite set and C be a connected compound in the induced graph (V_j) . Further, let u be among vertices in C such that $\Box d(u, v_2) \Box \min_{v \Box V} d(v, v_2)$. Since v_2 resolves every pair of vertices in V_j ,

the choice of *u* is unique. Then any vertex adjacent to *u* say *w*, is at distance to *w*, say *x*, is at distance +2 from v_2 and so on. In fact, for any $v \Box C$ the component C is a path and second part is trivial which is shown in Figure 1.2.2. + 1 from v_2 , any vertex adjacent $d(v_2, v) = d(v_2, u) + d(u, v)$. Thus

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Corollary 1.2.5. A graph *G* with $\Box \Box G \Box \Box 2$ cannot have K_5 as a subgraph.

Proof. As diameter of K_5 is one, vertices of K_5 are to be there in at most two consecutive distance partite sets. Then at least one among possible two sets contain three or more vertices of K_{s_5} which induces a cycle, which is not a path. Hence *G* cannot have K_5 . This is shown in Figure 1.2.3.

Figure 4.2.3.

Corollary 1.2.6. A graph G with $\Box \Box G \Box \Box 2$. Then for a triangle Tin G, if any, all the vertices of T cannot be at

the same distance from v_1 or v_2 .

Proof. Let u, v, w be the vertices of a triangle. If all the vertices are at distance-say *i* from v_i and all these

vertices lie in the same partite set say V_i. Then all these vertices induces a cycle in the same partite set, a

contradiction to Theorem 1.2.4. **Corollary 1.2.7.** For any graph *G* with $\Box \Box G \Box \Box 2$ the metric basis of *G* cannot have a vertex v of a subgraph K4

of *G*.

Proof. Let { v_1, v_2 } be a metric basis of *G* and $v_1 \square V(K_4)$. Consider the distance partite sets *Vo*, V_1 of *V*(*G*) with reference to v_1 . Then V_1 has the other three vertices of K_4 which induce a cycle, a contradiction to Theorem

1.2.4, which is shown in Figure 1.2.4.

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Figure 1.2.4.

Theorem 1.2.8. The maximum degree of any vertex in a graph G with $\Box \Box G \Box \Box 2$ is eight and it is realizable.

Proof. Let G be a graph with $\Box \Box G \Box \Box 2$ and let { v_1, v_2 } be a metric basis of G. By Corollary 1.1.5. and by

Theorem 1.2.4, given any vertex $u \square V_i$, it can be adjacent to at most three vertices each from $V_{i \square 1}$ and $V_{i \square 1}$

and at most two vertices from V_i . Hence the degree of u is at most eight. In the following Figure 1.2.5, a graph G with $\Box \Box G \Box \Box 2$ is

observed and a vertex of G having degree eight and all the vertices are labeled

with their distance from v_2 .

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Remark 1.2.9. The above Theorem gives an upper bound for degree of any vertex in a graph *G* with $\Box \Box G \Box \Box 2$ **Theorem 1.2.10.** Let $(v_1 \ v_2)$ be a metric basis of *G*, where $\Box \Box G \Box \Box 2$. Then *G* cannot have $K_5 - e$ as a subgraph.

Proof: Since the graph induced by any distance partite set can have only components of paths and isolated vertices, vertices of $K_5 - e$ are distributed as three (u_1 , u_2 , u_3) in one distance partite set, say V_i and other two (u_4 ,

 u_5) in an adjacent distance partite set, $V_i \square_1$ or $V_i \square_1$ as shown in the Figure 1.2.6, in which case two of the three vertices u_1 , u_2 , u_3 are of degree three in $K_5 - e$ and the remaining vertices are of degree four in $K_5 - e$. Without loss of generality, assume that u_1 and u_3 are of degree three and u_2 , u_4 , u_5 are of degree four in $K_5 - e$, as shown in the

Figure 1.2.6. Note that u_1 , u_2 , u_3 are pair wise resolvable by v_2 and so are u_4 and u_5 . Now consider u_4 which is

adjacent to all the remaining four vertices and let $d(v_2, v_4) =$ Further, as u_1, u_2 and u_3 are resolved pair wise

by v_2 and are adjacent to u_4 , $d(v_2, u_j)$, (j = 1, 2, 3) takes distinct values among $\ell + 1$, $t_i^{\ell} \mid \ell = -1$. Since u_5 is also

adjacent with all three vertices u_1 , u_2 and u_3 , we get $d(v_2, v) =$

,a contradiction to the conclusion that u_4 and u_5

are resolved by v_2

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Figure 4.2.6.

Remark. 1.2.11. It is clear that neither K_5 nor $K_5 \sim \{e\}$ can be a subgraph of a graph with metric dimension two. So it is of natural curiosity how further smaller subgraph of K_5 can be excluded from being a subgraph of a graph from the class of graphs with metric Dimension two in the following Figure 1.2.7., we realize that K₅-2e could be a subgraph of some graph G with $\Box \Box G \Box \Box 2$.

Theorem 1.2.12. if G is a graph with $\Box \Box G \Box \Box 2$. Then G cannot have

K 3,3 as a subgraph.

Proof: A graph G with $\Box \Box G \Box \Box 2$. Can have K _{3,3} is present as sub graph and that there is a metric basis of size two. All vertices have been given distinct coordinates .Let the vertices of K _{3,3} be { v_1 , v_2 , v_3 } and { v_4 , v_5 , v_6 }.with edges going across from one set of vertices to the other .Among these six vertices, let v_4 have the smallest first coordinates (a,b)..Vertices { v_1 , v_2 , v_3 } must all have first coordinate ei8ther a or a+1.

Suppose all three are a+1. The second coordinates must be

 $\{b - 1, b, b + 1\}$ (in some order) this forces the second coordinates of vertices v₅.and v₆ to be b. There is no way assign distinct coordinates to vertices $\{v_4, v_5, v_6\}$.

Suppose all three are *a*. The second coordinates must {b - 1, b, b + 1} (in some order). There are two vertices with coordinates (a, b).
Suppose vertices vj and v₂ have first coordinate a, and vertex v₃ has first coordinate a + 1. Vertices Vj and v₂ have their second coordinates {b - 1, b, b + 1} in some order. Clearly the second coordinate of vertices v₅ and v₆ is b. There is no way to assign distinct coordinates to vertices {v₄, v₅, v₆}.
Suppose vertices v; has first coordinate a, and vertices v₂ and v₃ have first coordinate a + 1. The coordinates of

the vertex v/ can be either (a, b + 1) or

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

Case 1. Coordinates of the vertex v/ is (a, b + 1).

In this case, the vertices v_2 and v_3 have to choose their second coordinates. The choices are $\{b, b - 1\}$ or

 $\{b, b + 1\}$ or $\{b + /, b - 1\}$. We consider each case separately.

- (i) The second coordinate of v_5 must be *b*. There is no choice for the first.
- (ii) In this case vertices v_5 and v_6 have to pick from $\{a, a + 1\}$ for the first coordinate and $\{b, b + 1\}$ for the second coordinate. Since there are a total of four distinct choices and vertices v_1 , v_2 and v_3 have used up three of them we cannot assign coordinates to v_5 and v_6 .
- (iii) The second coordinate of v_5 and v_6 must be *b*. There is no choice for the first.

Case 2. Coordinates of the vertex v_1 is $(a, b \sim 1)$.

In this case, vertices v_2 and v_3 have to choose their second coordinates. The choices are $\{b, b-1\}$ or $\{b, b+1\}$

or $\{b + 1, b - 1\}$. We consider each case separately.

(i) The choices for vertices v_5 and v_6 are $\{a, a + 1\}$ for the first coordinate and $\{b - 1, b\}$ for the second coordinate.

Since there are a total of four distinct choices and vertices v_1 , v_2 and v_3 have used up three of them we cannot assign coordinates to vertices v_5 and v_6 .

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

(ii) The second coordinate of v_5 must be *b*. There is no choice for the first.

(iii) The second coordinate of v_5 must be b. The first coordinate is forced to be a + I. There is no choice for node v_6 .

= n. Then **Theorem 4.2.13.** Let $\{v_1, v_2\}$ be a metric basis of *G*, where $\Box \Box G \Box \Box 2$. Let $e(v_1) = k$ and n $4 \qquad [$ eccentricity of the second resolving vertex v_2 is greater than or equal to $\Box \Box G$ number x. integer part of the

Proof. Let $e(v_1) = k$ and $\{V_0, V_1, \ldots, V_k\}$ be the distance partition of V(G) with reference to v_1 ; Then there is at

 \square \square \square and \square { v_1 , \square \square v_2 \square \square } be a metric basis of \square *G*. \square Let \square \square be

least one distance partite set with number of vertices greater than or equal to

Theorem 1.2.14. Let G be a graph with

 $v_1 \square V(P)$ then V_2 consists of at

the Petersen

graph. Then neither of v_1 and v_2 are in V(P). Further, if eccentricity of any v_1 ; and v_2 is not more than three, then *P* cannot be a subgraph of *G*.

Proof: Consider distance partite sets $\{V_0, V_1, V_2, \ldots, V_k\}$ with reference to v_1 . If

least six vertices of V(P) which induces a cycle in V_2 . This is a contradiction. Hence $v_1 \square V(P)$. Similarly

 $v_2 \square V(P)$. Suppose that P is a subgraph of G and $e(v_2) = 3$. Now consider distance partite sets with reference to

 v_1 . Then at most one Vj which contains v_2 may have four vertices and the remaining V_i have no more than

three vertices. As $v_1 \square V(P)$ and diameter of P = 2, V(P) is distributed among three V_j 's such that one having four vertices

of V(P)

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

and other two having three each. This implies that $v_2 \square V(P)$ which is a contradiction.

Theorem 1.2.15. Let G be a graph with $\Box \Box G \Box$ \Box 2 then there is no connected subgraph H of G such that

 $d(H) \Box \sqrt{m \Box 1}$, where *m* is cardinality of *V*(*H*).

Proof. Consider a metric basis $\{vI, v2\}$ of G, where $\Box \Box G \Box \Box 2$, and distance partition $\{V0, V1, V2, \dots, Vk\}$ of

V(G) with reference to among the basis elements, say v_I . Let H be any connected subgraph of G. Any pairs of

vertices, among vertices of H and in the same partite set, say V_j , are resolved by v_2 . Since the distance between

any pair of vertices for $\{v_n \mid v_n \mid V(H) \mid V_j\}$ is not more than d(H), $d(v_2, v_n)$) takes distinct values among $\ell \quad \ell \quad \ell \quad \ell \quad \ell \quad V(H) \mid V_j\}$ is not more than d(H), $d(v_2, v_n)$) takes distinct values among $\ell \quad \ell \quad \ell \quad V_j \mid V \mid H \quad \{d(v, v_j)\}$. So, the cardinality of $i \quad V_j \mid V_j$

Further, the vertices of H could be distributed among at most d(H) + 1 consecutive V_i . Bence the cardinality

of *H* is at most (d(H) + 1) (d(H) + 1).

That is m \Box $(d(H) + 1)^2$, where *m* is cardinality of *V*(*H*). Therefore $\sqrt{\frac{m \Box}{1}} \Box d(H)$. This proves the

result.

Lemma 1.2.16. Let *G* be a graph with $\Box \Box G \Box \Box 2$ and $\{v_1, v_2\}$ be a metric basis of *G*. Further, let $\{V_0, V_1, V_2, \ldots, V_k\}$ be the distance partition of V(G) with reference to the vertex v_1 . Then every distance partite set can have at most two vertices more than the maximum possible cardinality of preceding distance partite set.

	and V _i		
Proof. Consider a distance partite set V_i ,	□1	has <i>m</i> vertices. Let $d(v_2, u_j) = -i$,	$-i+1,, -i+m^{1},$

 $(m^{I} \square m)$, where $u_{j} \square V_{i \square 1}$. As every vertex in V_{i} , is adjacent to one or the other vertices in $V_{i \square 1}$, $d(v_{2}, w_{i})$ where

 w_i Vi can take one of the distinct values -i-1, -i, ..., $-i + m^1 + 1$. Thus if V, <.j has a maximum of

 $m^{1} + 1$ vertices then V_{i} has a maximum of $m^{1} + 1 + 2$ vertices.

Theorem 1.2.17. Let G be graph with $\Box \Box G \Box \Box 2$ and { v_1 , v_2 } be a metric basis of G. Further, let { V_0 , V_1 ,

 V_2, \ldots, V_k be the distance partition of V(G) with reference to one of the vertices in the metric basis. Then

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

maximum number of vertices in any distance partite set, say V_i for $0 \square i \square k$ is (2i + 1).

Proof. Proof is by mathematical induction and induction is applied on *i*, the suffix of V_t for $0 \square i \square k$. The result

is true for i = 0 and 1.Assume that the result true for *i*. That is, *Vi* has at most (2i +1) vertices. By the previous Lemma 1.2.16., $V_i + 1$ can have at most the vertices more than (2i+1) vertices. Hence $V_i + 1$ can have at most

2i+3 = 2(i+1) + 1 vertices. By mathematical induction the result

follows for any positive integer

Figure 1.2.8.

1.3. Characterization of Graphs with Metric Dimension Two

In this section we determine the characterization of graphs with metric

dirnension two.

i,

Theorem 1.3.1. Let G be a graph which is not a path with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $\{V_{i0}, V_{i1}, \ldots, V_{ik}\}$ be the

distance partition of V(G) with reference to the vertex v_i, where k_i is the eccentricity of $v_i \ 1 \Box i \Box n$. The metric

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

with

 $\Box k \Box e(v_i)$

and

dimension of G is 2 if and only if there exist vertices v_i and v_j such that

 $1 \square k \square e(v_i)$ and $1 \square l \square e(v_j)$.

Proof. Let G be a graph which is not a path with $V(G) = \{v_1, v_2, \dots, v_n\}$ and $\{V_{i0}, V_{i1}, \dots, V_{ik}\}$ be the distance

partition of V(G) with reference to the vertex v_i , where k_i is the eccentricity of $v_i \ 1 \ \square \ i \ \square \ n$. Let $\square \ \square \ G \ \square \ 2$. We

have to prove that there exist vertices v_i , and v_j such that

 $1 \square l \square e(v_j)$. Suppose not, for given v_p and v_r ,

 $\begin{vmatrix} \Box & V \\ V_p & r \\ q & s \end{vmatrix} \Box$ for

V $ik \square V_{jl} \square 1$ for every k and

for some p_q and $r_s\,$ implies that there exist at least

with 1

 $v_{ik} \square v_{jl} \square 1$ for every k and

two vertices, say u1 and u2 in $V_{p,q} \square V_{rs}$ such that d(vp, u1) = d(vp, u2) = q and d(vq, u1) = d(vq, u2) = s and hence u_1 and u_2 are not resolved by both v_p and v_r so, $\begin{vmatrix} V \\ p \\ q \\ \square V_{rs} \end{vmatrix} \square V_{rs} \end{vmatrix} \square 1$ for all p_q and r_s implies no pair of vertices v_p and

vr resolves V(G), in other words $\Box \Box G \Box \Box 2$.

Conversely if there exist
$$v_p$$
 and v_r such that $\begin{vmatrix} \Box & V \\ V_p & r \\ q & s \end{vmatrix} \Box 1$ for all p_q and r_s , then given any pair of $w_1 \Box V p \Box V$ $\Box V p_{q2} \Box V$
vertices w_1 and w_2 from V(G) we have $\begin{pmatrix} w_1 \Box V p \Box V & \Box V p_{q2} \Box V \\ q & r & s \\ 1 & 1 & 2 \end{pmatrix}$ where at least p_{q1} is different

from p_{q2} or r_{sl} is different from r_{s2} . This implies that w_l and w_2 are resolved by at least one of v_p and v_r . So

2 and in fact, \Box (*G*) \Box 2 *as G* is not a path.

Illustration (i). Look at the graph G given in Figure 1.3.1. Let $V(G) = \{v_1, v_2, v_3, v_4\}$. Then

$$V_{I0} = \{ v_1 \}, V_{II} = \{ v_2, v_4 \} V_{I2} = \{ v_3 \},$$

 $\mathbf{V}_{20} = \{ \mathbf{v}_2 \}, \, \mathbf{V}_{21} = \{ \mathbf{v}_1, \, \mathbf{v}_3, \, \mathbf{v}_4 \},$

 $V_{30} = \{ v_3 \}, V_{31} = \{ v_2, v_4 \}, V_{32} = \{ v_1 \},$

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

 $V_{40} = \{v_4\}, V_{41} = \{v_1, v_2, v_3\}$ are the distance partite sets with reference to each vertex in V(G). Since the vertices

	$\Box V$		$\Box e(v_1$	
v_1 , $v_2 \square V(G)$ such that	$^{V_{1}}k_{2} l$	\Box 1 for every k and	with $1 \Box k$)	and $1 \square l \square e(v_2)$, we have

 V_4

Figure 1.3.2.

Let $V(G) = \{ v_1, v_2, v_3, v_4, v_5, v_6 \}$. Then

 $V_{10} = \{ v_1 \}, V_{11} = \{ v_6 \}, V_{12} = \{ v_2, v_3, v_4, v_5 \},$

 $V_{20} = \{ v_2 \}, V_{21} = \{ v_6 \}, V_{22} = \{ v_1, v_3 v_4, v_5 \},$

 $V_{30} = \{v_3\}, V_{31} = \{v_6\}, V_{32} = \{v_1, v_2, v_4, v_5\},\$

 $V_{40} = \{ v_4 \}, V_{41} = \{ v_5, v_6 \}, V_{42} = \{ v_1, v_2, v_3 \},$

$$V_{50} = \{ v_5 \}, V_{51} = \{ v_4, v_6 \}, V_{52} = \{ v_1, v_2, v_3 \},$$

$$V_{60} = \{ v_6 \}, V_{61} = \{ v_1, v_2, v_3, v_4, v_5 \}$$

are the distance partite sets with reference to each vertex in V(G).

Since no two vertices
$$v_i$$
, $v_j \square V(G)$ such that $V \square V \\ k_j \ l \square 1$ for every k and with $1 \square k$ and

V5

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

 $\begin{array}{ccc} 1 & \square & l & \square & e \\ v_j & & \end{array}), we have \quad \square (G) & \square 2. \end{array}$

References:

- [1] Christopher Poisson and Ping Zhang. The metric dimension of unicyclic graphs. J.Combin. Math. Combin. Comput., 40:17–32, 2002.
- [2] Buckley F and Harary F, Distance in graphs, Addison Wesley (1990).
- [3] Hartsfield Gerhard, Ringel, Pearls in Graph Theory, Academic press, USA (1994).
- [4] Harary F and Melter R.A, On the metric dimension of a graph, Ars Combinatoria2 (1976), 191-195.
- [5] F. Harary, Graph theory, Narosa/Addison Wesley (1969).
- [6] Paul F. Tsuchiya, The landmark hierarchy; A new hierarchy for routing in very Large networks, ACM 0-89791-279-9/88/008/0035, 1988, page 35-42.
- [7] Jose Cáceres, Carmen Hernando, Merce Mora, Ignacio M. Pelayo, Marìa. Puertas, Carlos Seara and David R. Wood, On the metric dimension of Cartesian product of graphs, arXiv: math.CO/0507527 v3 2 Mar 2006.
- [8] Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in graphs. Discrete Appl. Math., 70(3):217–229, 1996.
- [9] Shanmukha B, Certain applications of number theory in graphs with emphases to networks. PhD. Thesis, 2003.
- [10] Shanmukha B, Sooryanarayana B and Harinath K.S, Metric dimension of Wheels, FEJ. Appl. Math., 8(3)(2002), 217-229.
- [11] Sooryanarayana B and Shanmukha B, A note on metric dimension, FEJ. Appl. Math., 5(3),(2001), 331-339.
- [12]Sooryanarayana B, Certain combinatorial connections between groups, graphs and surfaces, PhD Thesis, 1998.
- [13] Sooryanarayana B, On the metric dimension of a graph, Indian. J. Pure Appl.Math 29(4),(1998), 413 415[2].
- [14] Sooryanarayana B, K.S. Harinath and R.Murali, Some results on metric

dimension of graph of diameter two,(communicated).

[15]Sudhakara.G and Hemanth kumar, Graphs with Metric Dimension Two-A Characterzation.World Academy

Mathematics and Applications

Volume: 1 Issue: 1 08-Jan-2014, ISSN_NO: xxxx-xxx

of science, Engineering and Technology,60(2009)