GRAPHS WITH METRIC DIMENSION TWO

Dr.K.Renganathan ${ }^{1}$. Dr.R.Srinivasan ${ }^{2}$
SSM Institute of engineering and Technology,Dindigul ${ }^{1}$ Gongunadu college of engineering and Technology,Thottiam ${ }^{2}$ renga81@gmail.com, srinivasanmaths@gmail.com $\quad \beta(G)$

$\beta(G)$
ABSTRACT - In this paper, we discuss some characteristics of a graph due to the properties of distance partition and establish some results pertaining to the structure of a graph \boldsymbol{G} with प०2■. Finally the graphs with $\square \mathbf{2}$ is characterized which is in fact proved in [15].

I. INTRODUCTION

In this chapter, the distance partition of vertex set of graph G is defined, with reference to a vertex in it and with the help of the same, characterize the graphs with metric dimension two (i.e. $\square \square G \square \square 2$). For a given graph G, there are a number of properties related to the distance between two vertices and have been widely studied by various authors.The result given in Proposition 1.1.4 was observed by Samir Khuiler et. al [8], and is an important tool in deriving several interesting results of the present chapter. The Corollary 1.2.5. owes to Samir Khuiler et. al [8] and Corollary 1.2.6. is due to Sooryanarayan [13] and Corollary 1.2.7. proceeds from Sooryanarayanan, Murali, Harinath [14].

1.1. Properties of Distance Partition

In this section, we discuss some characteristics of a graph due to the properties of distance partition.

Definition 1.1.1. Let G be a graph with vertex set $V(G)$ and v be a vertex in it. Then $\left\{V_{0}, V_{1}, V_{2}, \ldots, V_{k}\right\}$ is called a distance partition of $V(G)$ with reference to the vertex v if $V_{0}=\{\mathrm{v}\}$ and V_{t} contains those vertices which are at distance i from v for $0<i<k$, where k is the eccentricity of v in G. The sets $V o, V j, V_{2}, \ldots, V_{k}$ are called distance partitite sets.
Example 1.1.2. Look at the graph G given in the Figure 1.1.1. v2 v4

Figure. 1.1.1.
Let $v \square V(G)$. Then $V_{0}=\left\{v_{\}}\right\}, V i=\left\{v_{2}, v_{3}\right\}, V_{2}=\left\{v_{4}, v_{5}\right\}, V 3=\left\{v_{6}\right\}$ are called the distance partite sets of $V(G)$ with reference to the vertex v,.
Corollary 1.1.3. Let G be a graph with $\square \square G \square \square 2$ and let $\left\{v_{h} v_{2}\right\}$ be a metric basis of G. Then every pair of
vertices $W j$ and $\mathrm{w}>2$ from different distance partite sets are resolved by at least v_{7} and when $u j$ and u_{2} are from same distance partite set then v_{2} resolves them.

Proof: Let u_{l} and u_{2} are from same partite set say $V j$ with reference to the vertex v_{1}. Since
$d\left(u_{1}, v_{l}\right)=j=d\left(u_{2}, v_{1}\right)$ and $\left\{v_{1}, v_{2}\right\}$ be a metric basis of G, v_{2} resolves u_{1} and u_{2}. Now suppose w_{1} and w_{2} are from different distance partite sets say V_{i} and $V j$ respectively.
Since $d\left(w_{l}, v_{l}\right)=i$
and $d\left(w_{2}, v_{2}\right)=j, w_{1}$ and w_{2} are resolved by v_{1}. This is shown in
Figure 1.1.2.

Figure 1.1.2.

Proposition 1.1.4. In a graph $G(V, E)$, consider any three vertices u, v and w such that $u v \square E$. If $l=d(u, w)$
then $d(v, w)$ is one of $\quad-1$, and +1.

Corollary 1.1.5. Given any vertex $\quad v \square V_{i}$. there exist at most three vertices in $\quad V_{i \square 1}$ adjacent to v , where
$0 \square i \square e(v) \square 1$. Similarly there exist at most three vertices in

1.2. Results Pertaining to the Structure of a Graph with

```
v}i\square1 adjacent to v when 1 \squarei\squaree(v)
\square\squareG
    \square \square2
```

This section establishes some results pertaining to the structure of a graph G with $\square \square G \square \square 2$. Further, let $\left\{V_{0}\right.$,
$\left.V_{l}, V_{2}, \ldots, V_{k}\right\}$ be the distance partition of G with reference to the vertex v_{l}. The results of the Theorems 1.2.3 and 1.2.4 are due to Samir Khuller et. al [10] and a simple alternative proof using the concept of distance partition is given.

Theorem 1.2.1 For any vertex $v \square V_{j}$ there exists a shortest path of length between v_{l} and v. In fact, a shortest path from v_{1} to v contains exactly one vertex $w_{1} \square V_{j}$ for $1 \square i \square j$, and the distance $d\left(w_{1}, v\right) \square j \square i$.

Proof. The first part of the theorem is immediate from the definition of distance partite set and $v \square V_{j}$. Note

that if u_{1}, u_{2} are adjacent and	$u_{i} \square V_{i}$ for some $i \square 1$, then u_{2} is in one of	$\begin{aligned} & V_{i \square 1}, \\ & V \end{aligned}$	and	$\mathrm{V}_{i \square 1}$. Suppose that a
shortest path from V_{1} to $v \square V_{j}$	of length j consists of more than one vertices	u_{1}, u	V_{i}	where $1 \square i \square j$. Then

$$
v_{1}, w_{1}, \ldots, u_{1}, \ldots . u_{2}, \ldots,
$$

$$
\text { v. } \quad \text { Since } \mathrm{d}\left(\mathrm{v}_{1}, v\right)=j, j=\operatorname{length}\left(v_{1-} u_{1}\right)+\operatorname{length}\left(u_{1}-\mathrm{u}_{2}\right)+
$$

length $\left(u_{2}-v\right)>d\left(v_{1}, v_{2}\right)+$ length $\left(v_{2}-v\right)$. Since $u_{1}, u_{2} \quad \square V_{i}$ we have $d\left(v_{1}, u_{1}\right) \square d\left(v_{1}, v_{2}\right) \square i \quad$.So there exist a path v
${ }_{1}$ to u_{2} of length i. Hence we obtain a path $\left(v_{1} \square u_{2}\right) \square\left(u_{2} \square v\right)$ of length less than j from v_{1} to u this contradicts
$d\left(v_{1}, v\right) \square j$

Theorem 1.2.2. If G is a graph with $\square \square G \square \square 2$ and metric basis $\left\{v_{1}, v_{2}\right\}$ then there exists a unique shortest path between v_{1} and V_{2}.

Proof. Let $V_{0}, V j, V_{2}, \ldots ., V_{k}$ be the distance partite sets with reference to v_{1} and $v_{2} \square V_{j}$. By Theorem 1.2.1. shortest path between v_{l} and v_{2} contains only one vertex from each distance partite set $V o, V j, V_{2}, \ldots \ldots, V_{j-1}$. Suppose
that P_{1} and P_{2} are two shortest distinct paths between v_{1} and v_{2}. Let $V i$ be the first partite set, while moving from v_{2} to v_{1}, in which P_{1} and P_{2} pass through two distinct vertices u_{1} and u_{2} respectively. Then $d\left(v_{2}, u_{1}\right)=d\left(v_{2}, u_{2}\right)$ and hence u_{1} and u_{2} are not resolved by any of v_{1} and v_{2}, a contradiction to the fact that $\left\{v_{1}, v_{2}\right\}$ is a metric basis of G, which is shown in Figure 1.2.

Theorem 4.2.3. Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ be a metric basis of G with $\square \square G \square$ then degree of both v_{1} and v_{2} is less than or equal to three.

Proof. Let $d\left(v_{l} v_{2}\right)=$. Then any vertex adjacent to v_{l} is at distance - 1 ,
or +1 from v_{2}. Since any pair of
vertices that are adjacent to v_{l} are not resolved by v_{1}, and are to be resolved by v_{2}, the distances from these vertices
to v_{2} are different. Hence the number of vertices adjacent to v_{l} does not exceed three. In other words,
$d e g \mathrm{v}_{1} \square 3$.Similarly deg $v_{2} \square 3$

Theorem1.2.4. Let $\left\{v_{l}, v_{2}\right\}$ be a metric basis G, where $\square \square G \square \square 2$. Consider distance partite sets $V_{0}, V_{l,} V_{2}$, .., V_{k} with reference to v_{1}. Any connected component of the graph induced by a distance partite set is a path and in fact, degree of any vertex in the graph induced by the distance partite set is at most two.

Proof. Let $V j$ be a distance partite set and C be a connected compound in the induced graph $(V j)$. Further, let u be among vertices in C such that $\square d\left(u, v_{2}\right) \square \mathrm{m}$ in ${ }_{v \square V} d\left(v, v_{2}\right)$. Since v_{2} resolves every pair of vertices in $V j$,
the choice of u is unique. Then any vertex adjacent to u say w, is at distance to w, say x, is at distance $\quad+2$ from v_{2} and so on. In fact, for any $v \square C$ the component C is a path and second part is trivial which is shown in Figure 1.2.2.
+1 from v_{2}, any vertex adjacent $d\left(v_{2}, v\right)=d\left(v_{2}, u\right)+d(u, v)$. Thus

Corollary 1.2.5. A graph G with $\square \square G \square \square 2$ cannot have K_{5} as a subgraph.

Proof. As diameter of K_{5} is one, vertices of K_{5} are to be there in at most two consecutive distance partite sets.
Then at least one among possible two sets contain three or more vertices of $K s_{5}$ which induces a cycle, which is not a path. Hence G cannot have K_{5}. This is shown in Figure 1.2.3.

Figure 4.2.3.

Corollary 1.2.6. A graph G with $\square \square G \square \square 2$. Then for a triangle Tin G, if any, all the vertices of T cannot be at the same distance from v_{1} or v_{2}.

Proof. Let u, v, w be the vertices of a triangle. If all the vertices are at distance-say i from v_{i} and all these vertices lie in the same partite set say V_{i}. Then all these vertices induces a cycle in the same partite set, a
contradiction to Theorem 1.2.4.
Corollary 1.2.7. For any graph G with $\square \square G \square \square 2$ the metric basis of G cannot have a vertex v of a subgraph K4 of G.

Proof. Let $\left\{\mathrm{v}_{1}, v_{2}\right\}$ be a metric basis of G and $v_{1} \square V\left(K_{4}\right)$. Consider the distance partite sets $V o, V_{l}$ of $V(G)$ with reference to v_{l}.Then V_{l} has the other three vertices of K_{4} which induce a cycle, a contradiction to Theorem 1.2.4, which is shown in Figure 1.2.4.

Figure 1.2.4.

Theorem 1.2.8. The maximum degree of any vertex in a graph G with $\square \square G \square \square 2$ is eight and it is realizable.

Proof. Let G be a graph with $\square \square G \square \square 2$ and let $\left\{v_{1}, v_{2}\right.$ \} be a metric basis of G. By Corollary 1.1.5. and by

Theorem 1.2.4, given any vertex $u \square V_{i}$, it can be adjacent to at most three vertices each from $V_{i \square 1}$ and $V_{i \square 1}$
and at most two vertices from V_{i}. Hence the degree of u is at most eight. In the following Figure1.2.5, a graph G with $\square \square G \square \square 2$ is observed and a vertex of G having degree eight and all the vertices are labeled with their distance from v_{2}.

Remark 1.2.9. The above Theorem gives an upper bound for degree of any vertex in a graph G with $\square \square G \square \square 2$

Theorem 1.2.10. Let ($v_{l} v_{2}$) be a metric basis of G, where $\square \square G \square \square 2$. Then G cannot have $K_{5}-e$ as a subgraph.

Proof: Since the graph induced by any distance partite set can have only components of paths and isolated vertices, vertices of $K_{5}-e$ are distributed as three $\left(u_{1}, u_{2}, u_{3}\right)$ in one distance partite set, say V_{i} and other two (u_{4},
u_{5}) in an adjacent distance partite set, $V_{i \square 1}$ or $V_{i \square 1}$ as shown in the Figure 1.2.6, in which case two of the three vertices u_{l}, u_{2}, u_{3} are of degree three in $K_{5}-e$ and the remaining vertices are of degree four in $K_{5}-e$. Without loss of generality, assume that u_{1} and u_{3} are of degree three and u_{2}, u_{4}, u_{5} are of degree four in $K_{5}-e$, as shown in the

Figure 1.2.6. Note that u_{1}, u_{2}, u_{3} are pair wise resolvable by v_{2} and so are u_{4} and u_{5}. Now consider u_{4} which is
adjacent to all the remaining four vertices and let $d\left(v_{2}, v_{4}\right)=$
by v_{2} and are adjacent to $u_{4}, d\left(v_{2}, u_{j}\right),(j=1,2,3)$ takes distinct values among
adjacent with all three vertices $u_{1,}, u_{2}$ and u_{3}, we get $\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}\right)=$
are resolved by v_{2}

Figure 4.2.6.

Remark. 1.2.11. It is clear that neither K_{5} nor $K_{5} \sim\{e\}$ can be a subgraph of a graph with metric dimension two. So it is of natural curiosity how further smaller subgraph of K_{5} can be excluded from being a subgraph of a graph from the class of graphs with metric Dimension two in the following Figure 1.2.7., we realize that $\mathrm{K}_{5}-2 \mathrm{e}$ could be a subgraph of some graph G with $\square \square G \square \square 2$.

Theorem 1.2.12. if G is a graph with $\square \square G \square \square 2$. Then G cannot have
$\mathrm{K}_{3,3}$ as a subgraph.

Proof: A graph G with $\square \square G \square \square 2$. Can have $\mathrm{K}_{3,3}$ is present as sub graph and that there is a metric basis of size two. All vertices have been given distinct coordinates . Let the vertices of $\mathrm{K}_{3,3}$ be $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{4}, v_{5}\right.$, $\left.v_{6}\right\}$. with edges going across from one set of vertices to the other .Among these six vertices, let v_{4} have the smallest first coordinates (a,b)..Vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ must all have first coordinate ei8ther a or $a+1$.

Suppose all three are $a+1$. The second coordinates must be
$\{b-1, b, b+1\}$ (in some order) this forces the second coordinates of vertices $\quad \mathrm{V}_{5}$.and v_{6} to be b .There is no way assign distinct coordinates to vertices $\left\{v_{4}, v_{5}, v_{6}\right\}$..

Suppose all three are a. The second coordinates must $\{b-1, b, b+l\}$ (in some order). There are two vertices with coordinates (a, b).

Suppose vertices $v j$ and v_{2} have first coordinate a, and vertex v_{3} has first coordinate $a+1$. Vertices $V j$ and v_{2} have their second coordinates $\{b-1, b, b+1\}$ in some order. Clearly the second coordinate of vertices v_{5} and v_{6} is b. There is no way to assign distinct coordinates to vertices $\left\{v_{4}, v_{5}, v_{6}\right\}$.

Suppose vertices v; has first coordinate a, and vertices v_{2} and v_{3} have first coordinate $a+1$. The coordinates of the vertex $\mathrm{v} /$ can be either $(a, b+1)$ or
(a, b-1).

Case 1. Coordinates of the vertex $\mathrm{v} /$ is $(a, b+1)$.
In this case, the vertices v_{2} and v_{3} have to choose their second coordinates. The choices are $\{b, b-1\}$ or $\{b, b+1\}$ or $\{b+l, b-1\}$. We consider each case separately.
(i) The second coordinate of v_{5} must be b. There is no choice for the first.
(ii) In this case vertices v_{5} and v_{6} have to pick from $\{a, a+l\}$ for the first coordinate and $\{b, b+l\}$ for the second coordinate. Since there are a total of four distinct choices and vertices $v_{l,}, v_{2}$ and v_{3} have used up three of them we cannot assign coordinates to v_{5} and v_{6}.
(iii) The second coordinate of v_{5} and v_{6} must be b. There is no choice for the first.

Case 2. Coordinates of the vertex v_{1} is $(a, b \sim 1)$.

In this case, vertices v_{2} and v_{3} have to choose their second coordinates. The
choices are $\{b, b-1\}$ or $\{b, b+$ 1)
or $\{b+1, b-1\}$. We consider each case separately.
(i) The choices for vertices v_{5} and v_{6} are $\{a, a+1\}$ for the first coordinate and $\{b-1, b\}$ for the second coordinate.

Since there are a total of four distinct choices and vertices $\mathrm{v}_{1}, \mathrm{v}_{2}$ and v_{3} have used up three of them we cannot assign coordinates to vertices v_{5} and v_{6}.
(ii) The second coordinate of v_{5} must be b. There is no choice for the first.
(iii) The second coordinate of v_{5} must be b. The first coordinate is forced to be $\mathrm{a}+1$. There is no choice for node v_{6}.
Theorem 4.2.13. Let $\{v 1, v 2\}$ be a metric basis of G, where $\square \square G \square 2$. Let $e(v 1)=k$ and $\quad \mid V(G \mid \quad=n$. Then
eccentricity of the second resolving vertex v_{2} is greater than or equal to

Proof. Let $e\left(v_{l}\right)=k$ and $\left\{V_{0}, V_{l}, \ldots\right.$,
V_{k}) be the distance partition of $V(G)$ with reference to v_{1};. Then there is at
$\square n \square$
4

$v_{1} \square V(P)$ then V_{2} consists of at
least one distance partite set with number of vertices greater than or equal to
$\square \square 2 \square$ and $\square\left\{v_{l}, \square \square v_{2} \square \square \square\right.$ fe a metric basis of $\square G$. \square Let $\square P \square$ be
Theorem 1.2.14. Let G be a graph with
the Petersen
graph. Then neither of v_{1} and v_{2} are in $V(P)$. Further, if eccentricity of any v_{1}; and v_{2} is not more than three, then P cannot be a subgraph of G.

Proof: Consider distance partite sets $\left\{V_{0}, V_{1}, V_{2}, \ldots, V_{k}\right\}$ with reference to v_{1}. If
least six vertices of $V(P)$ which induces a cycle in V_{2}. This is a contradiction. Hence $v_{1} \square V(P)$. Similarly
$v_{2} \square V(P)$.Suppose that P is a subgraph of G and $e\left(v_{2}\right)=3$. Now consider distance partite sets with reference to v_{1}. Then at most one $V j$ which contains v_{2} may have four vertices and the remaining V_{i} have no more than three vertices. As $v_{1} \square V(P)$ and diameter of $P=2, V(P)$ is distributed among three $V_{j^{\prime}} s$ such that one having four vertices of $V(P)$
and other two having three each. This implies that

Theorem 1.2.15. Let G be a graph with $\square \square G \square$
$d(H) \square \sqrt{m \square 1}$, where m is cardinality of $V(H)$.
Proof. Consider a metric basis $\{v 1, v 2\}$ of G, where $\square \square G \square \square 2$, and distance partition $\{V 0, V 1, V 2, \ldots, V k\}$ of
$V(G)$ with reference to among the basis elements, say v_{1}. Let H be any connected subgraph of G. Any pairs of vertices, among vertices of H and in the same partite set, say $V j$, are resolved by v_{2}. Since the distance between

Further, the vertices of H could be distributed among at most $d(H)+1$ consecutive $V_{i^{\prime}} s$. Hence the cardinality
of H is at most $(d(H)+1)(d(H)+1)$.

That is $\mathrm{m} \square(d(H)+1)^{2}$, where m is cardinality of $V(H)$. Therefore

This proves the result.

Lemma 1.2.16. Let G be a graph with $\square \square G \square \square 2$ and $\left\{v_{l}, v_{2}\right\}$ be a metric basis of G. Further, let $\left\{V_{0}, V_{l \text {, }}\right.$
$\left.V_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ be the distance partition of $V(G)$ with reference to the vertex V_{1}. Then every distance partite set can have at most two vertices more than the maximum possible cardinality of preceding distance partite set.

$$
\text { and } V_{i}
$$

Proof. Consider a distance partite $\operatorname{set} V_{i}, \quad \quad \square 1 \quad$ has m vertices. Let $d\left(v_{2}, u j\right)=-i, \quad-i+1, \ldots,-i+m^{l}$, $\left(m^{l} \square m\right)$, where $u_{j} \square V_{i \square 1}$.As every vertex in V_{i}, is adjacent to one or the other vertices in $\quad V_{i \square 1}, d\left(v_{2}\right.$, w_{i}) where $w_{i} \square V i$ can take one of the distinct values $\quad-i-1, \quad-i, \ldots,-i+m^{l}+l$. Thus if $V,<. j$ has a maximum of $m^{l}+1$ vertices then V_{i} has a maximum of $m^{l}+1+2$ vertices.

Theorem 1.2.17. Let G be graph with $\square \square G \square \square 2$ and $\left\{v_{1,}, v_{2}\right\}$ be a metric basis of G. Further, let $\left\{V_{0}, V_{\text {,, }}\right.$ $\left.V_{2}, \ldots, V_{k}\right\} b e$ the distance partition of $V(G)$ with reference to one of the vertices in the metric basis. Then
\qquad
maximum number of vertices in any distance partite set, say V_{i} for $0 \square i \square k$ is $(2 i+1)$.

Proof. Proof is by mathematical induction and induction is applied on i, the suffix of V_{t} for $0 \square i \square k$. The result is true for $i=0$ and 1.Assume that the result true for i. That is, $V i$ has at most $(2 \mathrm{i}+1)$ vertices. By the previous Lemma 1.2.16., $V_{i}+1$ can have at most the vertices more than $(2 \mathrm{i}+1)$ vertices. Hence $V_{i}+1$ can have at most $2 i+3=2(i+1)+1$ vertices. By mathematical induction the result follows for any positive integer
i, whichis

Figure 1.2.8.

1.3. Characterization of Graphs with Metric Dimension Two

In this section we determine the characterization of graphs with metric
dirnension two.
Theorem 1.3.1. Let G be a graph which is not a path with $V(G)=\left\{v_{1}, v_{2,} \ldots, v_{n}\right\}$ and $\left\{V_{i 0}, V_{i l} \ldots, V_{i k}\right\}$ be the distance partition of $V(G)$ with reference to the vertex v_{i}, where k_{i} is the eccentricity of $v_{i} 1 \square i \square n$. The metric
$1 \square k \square e\left(v_{i}\right)$ and $1 \square l \square e\left(v_{j}\right)$.

Proof. Let G be a graph which is not a path with $V(G)=\left\{v_{1} v_{2}, \ldots, v_{n}\right\}$ and $\left\{V_{i 0}, V_{i l} \ldots, V_{i k}\right\}$ be the distance partition of $V(G)$ with reference to the vertex v_{i}, where k_{i} is the eccentricity of $\mathrm{v}_{\mathrm{i}} 1 \square i \square n$. Let

$$
\left|V^{v} i k \square V_{j l}\right| \square 1 \text { for every } k \text { and } \quad \text { with } 1
$$

have to prove that there exist vertices v_{i}, and v_{j} such that

$$
\square k \square e\left(v_{i}\right)
$$

for some p_{q} and r_{s} implies that there exist at least two vertices, say $u 1$ and $u 2$ in $V_{p q} \square V_{r s}$ such that $d(v p, u 1)=d(v p, u 2)=q$ and $d(v q, u 1)=d(v q, u 2)=s$ and hence u_{1} and u_{2} are not resolved by both v_{p} and v_{r} so, $\quad\left|\begin{array}{l}V \\ p \\ a\end{array} \square V_{r S}\right| \quad \square 1$ for all p_{q} and r_{s} implies no pair of vertices v_{p} and vr resolves $V(G)$, in other words $\square \square G \square \square 2$.

Conversely if there exist v_{p} and v_{r} such that $\left|\begin{array}{cc} & \square V \\ V_{p} & r \\ q & s\end{array}\right| \square 1$ for all $p_{q} \quad$ and r_{s}, then given any pair of
 vertices w_{1} and w_{2} from $V(G)$ we have from $p_{q 2}$ or $r_{s l}$ is different from $r_{s 2}$. This implies that w_{1} and w_{2} are resolved by at least one of v_{p} and v_{r}. So $\square \square G \square$ 2 and in fact, $\square(G) \square 2$ as G is not a path.

Illustration (i). Look at the graph G given in Figure 1.3.1. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then
$V_{10}=\left\{\mathrm{v}_{1}\right\}, V_{11}=\left\{v_{2}, v_{4}\right\} V_{12}=\left\{v_{3}\right\}$,
$\mathrm{V}_{20}=\left\{\mathrm{v}_{2}\right\}, V_{21}=\left\{v_{1}, v_{3}, v_{4}\right\}$,
$V_{30}=\left\{v_{3}\right\}, V_{31}=\left\{v_{2}, v_{4}\right\}, V_{32}=\left\{v_{1}\right\}$,
$V_{40}=\left\{v_{4}\right\}, V_{41}=\left\{v_{l,}, v_{2}, v_{3}\right\}$ are the distance partite sets with reference to each vertex in $V(G)$. Since the vertices
$\mathrm{v}_{1}, \mathrm{v}_{2} \square \mathrm{~V}(\mathrm{G})$ such that $\quad\left|{ }_{1} k_{k_{2}} \quad l\right| \square 1$ for every k and \quad with $\left.1 \square k\right) \quad$) v_{1} and $1 \square l \square e\left(v_{2}\right)$, we have
$\square(G) \square 2$.
(ii). Consider the graph G given in Figure-132

v_{4}

Figure 1.3.2.

Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. Then
$V_{10}=\left\{v_{1}\right\}, V_{11}=\left\{v_{6}\right\}, V_{12}=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$,
$V_{20}=\left\{v_{2}\right\}, V_{21}=\left\{v_{6}\right\}, V_{22}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3} v_{4}, \mathrm{v}_{5}\right\}$,
$V_{30}=\left\{v_{3}\right\}, V_{31}=\left\{v_{6}\right\}, V_{32}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$,
$V_{40}=\left\{v_{4}\right\}, V_{41}=\left\{v_{5}, v_{6}\right\}, V_{42}=\left\{v_{1}, v_{2}, v_{3}\right\}$,
$V_{50}=\left\{\mathrm{v}_{5}\right\}, V_{51}=\left\{v_{4}, v_{6}\right\}, V_{52}=\left\{\mathrm{v}_{1}, v_{2}, v_{3}\right\}$,
$V_{60}=\left\{v_{6}\right\}, V_{61}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$
are the distance partite sets with reference to each vertex in $V(G)$.
Since no two vertices $v_{i}, v_{j} \square V(G)$ such that $\quad\left|\begin{array}{c}V \\ k_{j}\end{array} \quad l\right| \square 1$ for every k and
$\square e\left(v_{i}\right)$
with $1 \square k$ and
$\left.\begin{array}{l}1 \square l \square e(\\ v_{j}\end{array}\right)$, we have $\square(G) \square 2$.

References:

[1] Christopher Poisson and Ping Zhang. The metric dimension of unicyclic graphs. J.Combin. Math. Combin. Comput., 40:17-32, 2002.
[2] Buckley F and Harary F, Distance in graphs, Addison - Wesley (1990).
[3] Hartsfield Gerhard, Ringel, Pearls in Graph Theory, Academic press, USA (1994)
[4] Harary F and Melter R.A, On the metric dimension of a graph, Ars Combinatoria2 (1976), 191-195.
[5] F. Harary, Graph theory, Narosa/Addison Wesley (1969).
[6] Paul F. Tsuchiya, The landmark hierarchy; A new hierarchy for routing in very Large networks, ACM 0-89791-279-9/88/008/0035, 1988, page 35-42
[7] Jose Cáceres, Carmen Hernando, Merce Mora, Ignacio M. Pelayo, Marìa. Puertas, Carlos Seara and David R. Wood, On the metric dimension of Cartesian product of graphs, arXiv: math.CO/0507527 v3 2 Mar 2006.
[8] Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in graphs. Discrete Appl. Math., 70(3):217-229, 1996.
[9] Shanmukha B, Certain applications of number theory in graphs with emphases to networks. PhD. Thesis, 2003.
[10] Shanmukha B, Sooryanarayana B and Harinath K.S, Metric dimension of Wheels, FEJ. Appl. Math., 8(3)(2002), 217-229.
[11] Sooryanarayana B and Shanmukha B, A note on metric dimension, FEJ. Appl. Math., 5(3),(2001), 331-339.
[12]Sooryanarayana B, Certain combinatorial connections between groups, graphs and surfaces, PhD Thesis, 1998.
[13] Sooryanarayana B, On the metric dimension of a graph, Indian. J. Pure Appl.Math 29(4),(1998), 413 - 415[2].
[14] Sooryanarayana B, K.S. Harinath and R.Murali, Some results on metric dimension of graph of diameter two,(communicated).
[15]Sudhakara.G and Hemanth kumar, Graphs with Metric Dimension Two-A Characterzation.World Academy
of science, Engineering and Technology,60(2009)

