An Interesting q-Continued Fractions of Ramanujan

S. N. Fathima ${ }^{1}$, T. Kathiravan and Yudhisthira Jamudulia
Department of Mathematics,Ramanujan School of Mathematics, Pondicherry University fathima.mat@pondiuni.edu.in,kkathiravan98@ail.com,yudhis4581@yahoo.co.in.

Abstract- In this paper, we establish an interesting q-identity and an integral representation of a q-continued fraction of Ramanujan. We also compute explicit evaluation of this continued fraction and derive its relation with Ramanujan G"ollnitz -Gordon continued fraction. 2000 Mathematics Subject Classification: 11A55.
Keywords: Continued fractions, Modular Equations.

1
Introduction

Ramanujan a pioneer in the theory of continued fraction has recorded several in the process rediscovered few continued fractions found earlier by Gauss, Eisenstein and Rogers in his notebook [10]. In fact Chapter 12 and Chapter 16 of his Second Notebook [10] is devoted to continued fractions. Proofs of these continued fractions over years are given by several mathematician, we mention here specially G.E. Andrews[3], C. Adiga, S. Bhargava and G.N. Watson [1] whose works have been compiled in [4] and [5].

The celebrated Roger Ramanujan continued fraction is defined by

$$
\begin{aligned}
& \begin{array}{l}
1 \mathrm{qq}^{2} \mathrm{q}^{3} \\
\mathrm{R}(\mathrm{q}):= \\
\\
\\
1+1+1+1+\ldots .|q|<1 .
\end{array}
\end{aligned}
$$

On page 365 of his lost notebook [11], Ramanujan recorded five modular equations relating $R(q)$ with $R(-q), R\left(q^{2}\right)$, $R\left(q^{3}\right) R\left(q^{4}\right)$ and $R\left(q^{5}\right)$

The well known Ramanujan's cubic continued fraction defined by

${ }^{1}$ Supported by UGC Grant No. F41-1392/2012/(SR) is recorded on page 366 of his lost notebook [11]. Several new modular equation relating $\mathrm{J}(\mathrm{q})$ with $\mathrm{J}(-\mathrm{q}), \mathrm{J}\left(\mathrm{q}^{2}\right)$ and $\mathrm{J}\left(\mathrm{q}^{3}\right)$ are established by H.H. Chan [8].

Similarly the Ramanujan G"ollnitz-Gordon continued fraction $\mathrm{K}(\mathrm{q})$ defined by

satisfies several beautiful modular relations. One may see traces of modular equation related to $\mathrm{K}(\mathrm{q})$ on page 229 of Ramanujan's lost notebook [11]. Further works related to $K(q)$ in recent years have been done by various authors including Chan and S.S Huang [9] and K.R. Vasuki and B.R. Srivatsa Kumar [12].

Motivated by these works in this paper we study the Ramanujan continued fraction

Mathematics and Applications

$$
={ }_{q} 1 / 2 \frac{\infty}{\left(q^{2} ; q^{4}\right)^{2}} .
$$

∞
In Chapter 16 Entry 12 of [5], Ramanujan has recorded the following continued fraction

$$
\begin{aligned}
& \frac{\left(a^{2} q^{3} ; q^{4}\right)_{\infty}\left(b^{2} q^{3} ; q^{4}\right)_{\infty}}{\left(a^{2} q ; q^{4}\right)_{\infty}\left(b^{2} q ; q^{4}\right)_{\infty}}=\frac{1}{1-a b+\left(1-\overline{a b)\left(1+q^{2}\right)}\right.}+ \\
& \frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{(1 a b)\left(1+q^{4}\right)}+\quad, \quad|\quad|<1, q \mid<1 \text {. (1.2) }
\end{aligned}
$$

In fact setting $a=q^{1 / 2}$ and $b=q^{1 / 2}$ in (1.2), we obtain (1.1).
In Section 2 we obtain an interesting q-identity related to $\mathrm{M}(\mathrm{q})$ using
Ramanujan's ${ }_{1} \psi_{1}$ summation formula [5, Ch. 16, Entry 17]

$$
\infty \quad(\text { a) } \mathrm{n} \mathrm{n} \quad(\mathrm{az}) \infty(\mathrm{q} / \mathrm{az}) \infty(\mathrm{q}) \infty(\mathrm{b} / \mathrm{a}) \infty, \quad|\mathrm{b} / \mathrm{a}|<|\mathrm{z}|<1
$$

X
and Andrew's identity [4, p. 57],

∞	${ }_{q} \mathrm{kn}$	∞	2	$1+\mathrm{q}^{\text {ln }} \mathrm{k}$	
			+2kn		
	${ }_{1} \mathrm{q}^{\text {ln }}+\mathrm{k}$	$=q^{\text {ln }}$		1	${ }_{q} \mathrm{ln}+\mathrm{k}$
$\mathrm{n}=0$		$\mathrm{n}=0$			
x -		X			

In Section 3 we obtain several relation of $\mathrm{M}(\mathrm{q})$ with theta function $\phi(\mathrm{q}), \psi(\mathrm{q})$ and $\chi(\mathrm{q})$. In Section 4 we obtain an integral representation of $M(q)$. In Section 5 we derive a formula that help us to obtain relation among $M\left(q^{1 / 2}\right), M(q)$, $M\left(\mathrm{q}^{2}\right) 3_{\mathrm{M}\left(\mathrm{e}^{-}-\pi^{\wedge} \mathrm{n}\right)}$ and $\mathrm{M}\left(\mathrm{q}^{4}\right)$. We establish explicit formulas for the evaluation of $\left.\mathrm{M}_{(\mathrm{e}-\pi} \sqrt{n} / 2\right)$ in Section 6.

We conclude this introduction with few customary definition we make use in the sequel. For a and q complex number with $|\mathrm{q}|<1$

$$
\begin{align*}
& \infty \\
& (\mathrm{a})_{\infty}:=(\mathrm{a} ; \mathrm{q})_{\infty}=\quad\left(1-\mathrm{aq} \mathrm{q}^{\mathrm{n}}\right) \\
& =0 \\
& { }_{n} \mathrm{Y} \\
& \text { and } \\
& \begin{array}{lll}
\mathrm{n}-1 & \mathrm{k} \quad(\mathrm{a})_{\infty}
\end{array} \\
& \begin{array}{rl}
(\mathrm{a})_{\mathrm{n}}:=(\mathrm{a} ; \mathrm{q})_{\mathrm{n}}=\quad & (1-\mathrm{aq} \quad)=\overline{\left(\mathrm{aq}^{\mathrm{n}}\right)} \\
& =0 \\
\mathrm{k}^{\mathrm{Y}} & \mathrm{n}: \text { any integer. }
\end{array} \\
& \infty \\
& \mathrm{f}(\mathrm{a}, \mathrm{~b}) \quad:={ }_{\mathrm{n}=-\infty}{ }^{\mathrm{an}(\mathrm{n}+1) / 2_{\mathrm{b}} \mathrm{n}(\mathrm{n}-1) / 2} \tag{1.5}
\end{align*}
$$

$$
\begin{equation*}
=(-\mathrm{a} ; \mathrm{ab})_{\infty}(-\mathrm{b} ; \mathrm{ab})_{\infty}(\mathrm{ab} ; \mathrm{ab})_{\infty}, \quad|a b|<1 \tag{1.6}
\end{equation*}
$$

Identity (1.6) is the Jacobi's triple product identity in Ramanujan's
[5, Ch. 16, Entry 19]. It follows from (1.5) and (1.6) that [5, Ch. 16, Entry 22],

$$
\begin{align*}
& \begin{array}{ll}
X & \\
& \left(q^{2} ; q^{2}\right)
\end{array} \\
& \psi(\mathrm{q}) \quad:=\mathrm{f}\left(\mathrm{q}, \mathrm{q}^{3}\right) \quad={ }_{\mathrm{n}=0}{ }_{\mathrm{q}} \mathrm{n}(\mathrm{n}+1) / 2 \quad={ }_{\left(\mathrm{q} ; \mathrm{q}^{2}\right)}^{\infty} \tag{1.8}\\
& \text { X } \\
& \text { and }
\end{align*}
$$

$$
\begin{equation*}
\chi(\mathrm{q}) \quad:=\left(-\mathrm{q} ; \mathrm{q}^{2}\right)_{\infty} . \tag{1.9}
\end{equation*}
$$

2 q-Identity related to $\mathrm{M}(\mathrm{q})$

Theorem 2.1

$$
\begin{aligned}
& \text { X } \quad-\quad \mathrm{X}
\end{aligned}
$$

Proof: Changing q to q^{8}, then setting $a=q^{2}, b=q^{10}$ and $z=q^{2}$ in ${ }_{1} \psi_{1}$ summation formula (1.3) we obtain

$$
\begin{aligned}
& \left(q^{4} ; q^{4}\right)^{2} \quad \infty \quad q^{2 n} \quad \infty \quad q^{6 n+4} \\
& \begin{array}{l}
\left(q^{2} 2 ; q^{4}\right) 2^{\infty} \\
n=0 \\
1{ }_{q} 8 n+2
\end{array}{\underset{n=0}{ } \overline{{ }_{q} 8 n+6}}^{1} \\
& \infty \quad \mathrm{X}_{-} \quad \mathrm{X}_{-}
\end{aligned}
$$

employing Andrews identity (1.4) with $\mathrm{k}=2, \mathrm{l}=8$ and $\mathrm{k}=6,1=8$ in both the summations in right side of the identity (2.2) respectively and finally multiplying both sides of the resulting identity with $\mathrm{q}^{1 / 2}$ and using product represtation of $\mathrm{M}(\mathrm{q})(1.1)$, we complete the proof of Theorem 2.1.

3
Some Identities involving $\mathrm{M}(\mathrm{q})$
We obtain relation of $\mathrm{M}(\mathrm{q})$ in terms of theta function $\phi(\mathrm{q}), \psi(\mathrm{q})$ and $\chi(\mathrm{q})$.
Theorem 3.1
$M(q)=q^{1 / 2}{ }^{\psi 4(q)}, \phi^{2}(q$
$8 \mathrm{M}\left(\mathrm{q}^{2}\right)=\phi^{2}(\mathrm{q})-\phi^{2}(-\mathrm{q})$,

$$
16 \mathrm{M}^{2}(\mathrm{q})=\phi^{4}(\mathrm{q})-\phi^{4}(-\mathrm{q}),
$$

$\mathrm{M}^{2}(\mathrm{q})$
$=\phi^{2}\left(q^{2}\right)$,
$\mathrm{M}\left(\mathrm{q}^{2}\right)$
$4 \mathrm{M}\left(\mathrm{q}^{2}\right)=\phi^{2}(\mathrm{q})-\phi^{2}\left(q^{2}\right)$,
$\mathrm{M}^{-1}(\mathrm{q})+\mathrm{M}(\mathrm{q}) \quad 1+\mathrm{q} \psi^{4}\left(\mathrm{q}^{2}\right)$
$M^{-1}(q)-M(q) \quad=\overline{1-q \psi^{4}\left(q^{2}\right)}$,
$8 \mathrm{M}\left(\mathrm{q}^{2}\right)=\chi^{2}(-q) \quad \varphi^{2}\left(-q^{2}\right)-\varphi^{2}(-q)$.
Proof: Using [5, Ch. 16, Entry 22(ii)] in (1.1), we obtain

$$
\mathrm{M}(\mathrm{q})=\mathrm{q}^{1 / 2} \psi^{2}\left(\mathrm{q}^{2}\right)
$$

Employing [5, Ch. 16, Entry 25(iv)] in (3.8), we obtain (3.1). From (3.1) we have(3.1)

$$
\mathrm{M}\left(\mathrm{q}^{2}\right)=\mathrm{q} \quad \begin{align*}
& \psi^{4}\left(\mathrm{q}^{2}\right) \\
& \phi^{2}\left(\mathrm{q}^{2}\right) \tag{3.9}
\end{align*}
$$

Employing [5, Ch. 16, Entry 25(vii)] and [5, Ch. 16, Entry 25(vi)] in (3.9), we obtain (3.2). Identity (3.3) immediately follows from (3.8) and [5, Ch. 16, Entry 25(vii)]. Again from (3.1), we have

$$
\begin{equation*}
\frac{\mathrm{M}^{2}(\mathrm{q})}{\mathrm{M}\left(\mathrm{q}^{2}\right)}=\frac{\psi^{8}(\mathrm{q}) \phi^{2}\left(\mathrm{q}^{2}\right)}{=\psi^{4}\left(\mathrm{q}^{2}\right) \phi^{4}(\mathrm{q})}, \tag{3.10}
\end{equation*}
$$

employing [5, Ch. 16, Entry 25(iv)] in the identity (3.10) we obtain (3.4). From (3.2) and (3.3), we have

$$
\begin{equation*}
64 \mathrm{M}^{2}\left(\mathrm{q}^{2}\right)+16 \mathrm{M}^{2}(\mathrm{q})=16 \phi^{2}(\mathrm{q}) \mathrm{M}\left(\mathrm{q}^{2}\right) \tag{3.11}
\end{equation*}
$$

dividing the identity (3.11) throughout by $16 \mathrm{M}\left(\mathrm{q}^{2}\right)$ and using (3.4) we obtain (3.5). From (3.1) we deduce that

$$
\begin{equation*}
\mathrm{M}^{-1}(\mathrm{q})+\mathrm{M}(\mathrm{q}) \quad \frac{\phi^{4}(\mathrm{q})+\mathrm{q} \psi^{8}(\mathrm{q})}{\mathrm{q}^{1 / 2} \phi^{2}(\mathrm{q}) \psi^{4}(\mathrm{q})} \tag{3.12}
\end{equation*}
$$

$$
M^{-1}(q)-M(q)
$$

$$
\begin{equation*}
=\frac{\phi^{4}(q)-q \psi^{8}(q)}{q^{1 / 2} \phi^{2}(q) \psi^{4}(q)} . \tag{3.13}
\end{equation*}
$$

On dividing (3.12) by (3.13) and using [5, Ch. 16, Entry 25 (iv)] in the resulting identity, we complete the proof of (3.6).
From (1.7) and (1.9) we have

employing [5, Ch. 16, Entry 30(ii)] in right hand side of above identity we obtain

Again from (1.7) and (1.9) we have

$$
\phi(-q)-\quad \chi(-q) \quad \phi(-q \quad)=(-q ; q)_{\infty} \quad 1-\mathrm{f}(-\mathrm{q},-\mathrm{q})
$$

employing [5, Ch. 16, Entry 30(ii)] and [5, Ch. 16, Entry 18(ii)] in right hand side of above identity we obtain

$$
\begin{align*}
& \phi(\quad q) \quad \chi(q) \quad \phi\left(\quad q^{2}\right)=\underline{-4 q\left(-q^{8} ; q^{8}\right)_{\infty}\left(q^{64} ; q^{64}\right)_{\infty}{ }^{3}}-q^{8} . \tag{3.16}\\
& \text {. } \begin{array}{l}
(3.15)(\\
3.16)(3
\end{array} \\
& -\quad-\chi(-q)-\quad\left(-q^{16} ; q^{32}\right)_{\infty} \quad \mathrm{M}\left(\mathrm{q}^{16}\right) \\
& \text { Multiplying (3.14) and (3.15) we complete the proof of (3.7). }
\end{align*}
$$

Theorem 3.2. Let $u=M(q), v=M(-q)$ and $w=M\left(q^{2}\right)$, then

$$
u^{2}-v^{2}=8 w^{2}
$$

Proof: On substituting (3.4) in (3.5), we obtain

$$
\phi_{(q)}=4 \mathrm{M} 2\left(\mathrm{q}^{2}\right)+\mathrm{M} 2(\mathrm{q}) \cdot \mathrm{M}\left(\mathrm{q}^{2}\right)
$$

Changing q to -q in (3.16), we have

$$
\phi^{2}(-q)=4 \mathrm{M} 2\left(q^{2}\right)+\mathrm{M} 2(-\mathrm{q}) \cdot \mathrm{M}\left(\mathrm{q}^{2}\right)
$$

Subtracting (3.17) from (3.16) and using identity (3.2), we complete the proof of Theorem 3.2.

Theorem 4.1. For $0<|q|<1$

$$
\mathrm{M}(\mathrm{q})=\exp ^{\mathrm{z}} \quad 2 \mathrm{q}+\mathrm{q} \quad \underset{\mathrm{c}}{8}+2 \phi(\mathrm{q})
$$

where $\phi(\mathrm{q})$ and $\psi(\mathrm{q})$ are as defined in (1.7) and (1.8). Proof: Taking \log on both sides of (3.1), we have

$$
\begin{equation*}
\log M(q)={ }_{2} \log q+4 \log \psi(q)-2 \log \phi(q) . \tag{4.2}
\end{equation*}
$$

Employing [5, Ch. 16, Entry 23(ii)] and [5, Ch. 16, Entry 23(i)] on right hand side of (4.2), we obtain

$$
\log \mathrm{M}(\mathrm{q})={ }^{1}=\log q+4 \underset{\mathrm{n}=1}{\infty} \quad .
$$

X
Differentiating (4.3) and simplifying, we have

$$
\begin{equation*}
\frac{d}{d q} \quad \log M(q)=\frac{1}{2 q} \quad \underset{q}{+}{ }_{q}{ }^{\frac{4}{n}=1} \quad \infty \quad(-1)^{n} q^{n} \quad\left(1+q^{n}\right)^{2} \quad+{ }_{n=1}^{\infty} \frac{q^{2 n-1}}{\left(1+q^{2 n-1}\right)^{2}} \quad \# . \tag{4.4}
\end{equation*}
$$

X
X
Using Jacobi's identity [5, Ch. 16, Identity 33.5, p. 54)] and [5, Ch. 16, Entry 23(i)] and integrating both sides and finally exponentiating both sides of identity (4.4), we complete the proof of Theorem 4.1.

5 Modular Equation of Degree n and Relation Between
$\mathrm{M}(\mathrm{q})$ and $\mathrm{M}\left(\mathrm{q}^{\mathrm{n}}\right)$
In the terminology of hypergeometric function, a modular equation of degree n is a relation between α and β that is induced by

where

$$
{ }_{2} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{~b} ; \mathrm{c} ; \mathrm{x})=\quad \operatorname{X}_{\mathrm{k}=0}^{\infty}{\overline{(\mathrm{a})_{\mathrm{k}}(\mathrm{~b})_{\mathrm{k}}}}_{(\mathrm{c})_{\mathrm{k}} \mathrm{k}!}^{\mathrm{x}^{\mathrm{k}}},
$$

and
$(a)_{k}=(a+k)$ \qquad
(a)

Let $Z_{1}(r)={ }_{2} F_{1}(1 / r, r-1 / r ; 1 ; \alpha)$ and $Z_{n}(r)={ }_{2} F_{1}(1 / r, r-1 / r ; 1 ; \beta)$, where n is the degree of the modular equation. The multiplier $\mathrm{m}(\mathrm{r})$ is defined by the equation

Theorem 5.1. If

$$
\begin{aligned}
\mathrm{q}=\quad \exp & { }_{2} \mathrm{~F}_{1}(1 / 2,1 / 2 ; 1 ; 1-\alpha) \\
& -\quad{ }_{2} \mathrm{~F}_{1}(1 / 2,1 / 2 ; 1 ; \alpha)
\end{aligned}
$$

then

$$
\alpha=16 \quad \frac{\mathrm{M}^{4}(\mathrm{q})}{\mathrm{M}^{4}\left(\mathrm{q}^{1 / 2}\right)}
$$

Proof: From (1.1) and (1.7), we have

$$
\begin{gathered}
\mathrm{M}(\mathrm{q}) \phi^{2}(\mathrm{q})=\mathrm{q}^{1 / 2} \frac{\left(\mathrm{q}^{4} ; \mathrm{q}^{4}\right)_{\infty}^{2}}{\left(\mathrm{q}^{2} ; \mathrm{q}^{4}\right)_{\infty}^{2}\left(-\mathrm{q}^{2} ; \mathrm{q}^{2}\right)_{\infty}^{4}\left(\mathrm{q}^{2} ; \mathrm{q}^{4}\right)_{\infty}^{2}} \quad\left(-\mathrm{q} ; \mathrm{q}^{2}\right)_{\infty}^{4}\left(\mathrm{q}^{4} ; \mathrm{q}^{4}\right)_{\infty}{ }^{2} \\
=\mathrm{M}^{2}\left(\mathrm{q}^{1 / 2}\right) .
\end{gathered}
$$

Substituting (5.3) in (3.3), we obtain

From a known identity [5, Ch. 16, p. 100, Entry 5] and (5.1) it is implied that

$$
\begin{gather*}
\alpha=1 \tag{5.5}\\
\quad-\frac{\phi^{4}(-q)}{\phi^{4}(q)} .
\end{gather*}
$$

Using (5.5) in (5.4), we complete the proof of (5.2).
Let α and β be related by (5.1). If β has degree n over α then from Theorem 5.1, we obtain

$$
\mathrm{M}^{4}\left(\mathrm{q}^{\mathrm{n}}\right)
$$

$$
\begin{equation*}
\beta=16 \quad \overline{M^{4}\left(q^{n / 2}\right)} . \tag{5.6}
\end{equation*}
$$

Corollary 5.2. Let $\mathrm{u}=\mathrm{M}\left(\mathrm{q}^{1 / 2}\right), \mathrm{v}=\mathrm{M}(\mathrm{q}), \mathrm{w}=\mathrm{M}\left(\mathrm{q}^{2}\right)$ and $\mathrm{x}=\mathrm{M}\left(\mathrm{q}^{4}\right)$, then

$$
\begin{equation*}
16 x^{4} v^{2}+32 x^{3} w v^{2}-4 x^{3} w u^{4}+24 x^{2} w^{2} v^{2}+8 x w^{3} v^{2}-x w^{3} u^{4}+w^{4} v^{2}=0 . \tag{5.7}
\end{equation*}
$$

Proof: From [5, Entry 24(v), p. 216], we have

$$
\begin{equation*}
\sqrt{1-\alpha} \alpha=1-\beta 1 / 4 \tag{5.8}
\end{equation*}
$$

On using (5.6) with $n=4$ and (5.2) in (5.8), we obtain

$$
\underline{u^{u^{4}}-16 v^{4}}=\underline{w-2 x}
$$

$$
r \quad u^{4} \quad w+2 x
$$

Squaring both side of (5.9) and then simplifying, we obtain (5.7).

6
Evaluations of M(q)
As an application of Theorem 5.1, we establish few explicit evaluation of $\mathrm{M}(\mathrm{q})$.
Let $\mathrm{q}_{\mathrm{n}}=\mathrm{e}^{-\pi \sqrt{n}}$ and let α_{n} denote the corresponding value of α in (5.1). Then by Theorem 5.1, we have

$$
\begin{array}{ccc}
\begin{array}{cc}
\mathrm{M}\left(\mathrm{e}^{-} \pi^{\vee}\right. & \overline{\mathrm{n}})
\end{array} & \begin{array}{c}
1 \\
\hline
\end{array} & 1 / 4 \\
- & - & \tag{6.1}\\
\mathrm{M}\left(\mathrm{e}^{-} \pi^{\vee}\right. & \mathrm{n} / 2) & =2^{\alpha \mathrm{n}}
\end{array}
$$

$1 \sqrt{ }^{-} 2$
$2 \sqrt{ }^{-}$
4

From [5, Ch. 17, p. 97], we have $\alpha_{1}=\quad 2, \alpha_{2}=(2-1) \quad$ and $\alpha_{4}=(\quad 2-1)$.
From [5, Ch. 17, p. 97], we have $\alpha_{1}=\quad 2, \alpha_{2}=(2-1) \quad$ and $\alpha_{4}=(\quad 2-1)$.
Thus from (6.1), it immediately follows

Ramanujan has recorded several modular equation in his notebook [10, p. 204-237] and [10, p. 156-160] which are very useful in the computation of class invariants and the values of theta function. Ramanujan has also recorded several values of theta function $\phi(\mathrm{q})$ and $\psi(\mathrm{q})$ in his notebook. For example

$$
\begin{align*}
& \overline{\phi\left(\mathrm{e}^{-3 \pi}\right)} \\
& =\overline{(3 / 4)}, \\
& =2^{-5 / 8_{e} \pi / 8 \frac{\pi_{1} 1 / 4}{(3 / 4)}}, \tag{6.5}\\
& =\mathrm{q}_{4} 6 \sqrt{3}-9 . \tag{6.6}
\end{align*}
$$

From (3.8) and (6.6), we have

$$
\mathrm{M}(\mathrm{e}-\pi / 2)=2^{-5 / 4} \quad \frac{\sqrt{ } \bar{\pi}}{{ }^{2}(3 / 4)}
$$

Using (6.8) and (6.2), we obtain

$$
\mathrm{M}\left(\mathrm{e}^{-\pi}\right)=\frac{\sqrt{\pi}}{{ }^{2}(3 / 2)} .
$$

Setting (6.9) in (6.4), we obtain

(6.)
J.M. Borwein and P.B. Borwein [7] are the first to observe that class invariant could be used to evaluated certain values of $\phi\left(\mathrm{e}^{-\mathrm{n} \pi}\right)$. The Ramanujan Weber class invariants are defined by

$$
\mathrm{G}_{\mathrm{n}}:=2^{-1 / 4} \mathrm{q}_{\mathrm{n}}{ }^{-1 / 24}\left(-\mathrm{q}_{\mathrm{n}} ; \mathrm{q}_{\mathrm{n}}{ }^{2}\right)_{\infty},
$$

and

$$
\begin{equation*}
\mathrm{g}_{\mathrm{n}}:=2^{-1 / 4} \mathrm{q}_{\mathrm{n}}{ }^{-1 / 24}\left(\mathrm{q}_{\mathrm{n}} ; \mathrm{q}_{\mathrm{n}}{ }^{2}\right)_{\infty}, \tag{6.11}
\end{equation*}
$$

where $\mathrm{q}_{\mathrm{n}}=\mathrm{e}^{-\pi \sqrt{n} \mathrm{n}}$. Chan and Huang has derived few explicit formulas for evalu-ating $\mathrm{K}\left(\mathrm{e}^{-\pi \sqrt{n} / 2}\right)$ in the terms of Ramanujan Weber class. Similar works are done
by Adiga ed. al. Analogoues to these works we obtain explicit formulas to evaluate
$\mathrm{M}\left(\mathrm{e}^{-\pi} \mathrm{n}^{\prime}\right)$
$\mathrm{M}\left(\mathrm{e}^{-} \pi \mathrm{n} / 2\right.$)
Theorem 6.1. For Ramanujan Weber class invariant defined as in (6.11), let $p=G^{12}{ }_{n}$ and $p_{1}=g_{n}{ }^{12}$, then

Mathematics and Applications

$\mathrm{M}\left(\mathrm{e}^{-}\right.$

$$
\mathrm{M}\left(\mathrm{e}^{-} \pi^{\sqrt{ } \mathrm{n} / 2)} \quad=2 \mathrm{ra}_{\mathrm{p}} \mathrm{r}^{2}+1-\mathrm{p} 1 .\right.
$$

Proof: From [9], we have

$$
\mathrm{G}_{\mathrm{n}}=\left[4 \alpha_{\mathrm{n}}\left(1-\alpha_{\mathrm{n}}\right)\right]^{-1 / 24} .
$$

Hence,

$$
1
$$

$$
\alpha_{\mathrm{n}}=\quad\left({ }^{\mathrm{p}} \mathrm{p}(\mathrm{p}+1) \quad+{ }^{\mathrm{P}} \mathrm{p}(\mathrm{p}-1)\right)^{2}
$$

(6.12)(6.13)(6.14)10 Using (6.14) in (6.1), we obtain (6.12).

Also from [9], we have

$$
2 \mathrm{~g}^{12}=\frac{1}{\sqrt{\alpha_{\mathrm{n}}}-\sqrt{\alpha} .}
$$

Hence

$$
\begin{equation*}
\sqrt{ } \alpha_{\mathrm{n}}=\mathrm{q} \quad\left(\mathrm{p}_{1}^{2}+1\right) \quad-\mathrm{p}_{1} . \tag{6.15}
\end{equation*}
$$

Using (6.15) in (6.1), we complete the proof of (6.13).
Example: Let $\mathrm{n}=1$. Since $\mathrm{G}_{1}=1$, from theorem 6.1 we have

$\mathrm{M}\left(\mathrm{e}^{-\pi}\right)$	I
	-
M(e $-\pi / 2$)	2

Let $\mathrm{n}=2$. Since $\mathrm{g}_{2}=1$, from theorem 6.1 we have

$$
V_{-}
$$

$$
\left.\mathrm{M}(\mathrm{e}-\pi)^{/} \quad 2\right)=2 \mathrm{q}^{\sqrt{ }} 2-1 .
$$

Remark: Using [10, p. 229] it is easily verified that $\mathrm{M}(\mathrm{q})$ and $\mathrm{K}(\mathrm{q})$ are related by the equation

$$
\mathrm{M}\left(\mathrm{q}^{2}\right) \mathrm{K}(\mathrm{q})+\mathrm{K}(\mathrm{q}) \mathrm{M}(\mathrm{q})-\mathrm{M}\left(\mathrm{q}^{2}\right)=0
$$

Acknowledgement

The first author is thankful to UGC, New Delhi for awarding research project [No. F41-1392/2012/(SR)] under which this work has been done.

References

[1] C. Adiga, B. C. Berndt, S.Bhargava and G. N. Watson, Chapter 16 of Ramanujan's Second

Notebook: Theta-Functions and q-Series, Mem. Amer. Math. Soc., No. 315, 53(1985), 1-85, Amer. Math. Soc., Providence, 1985.
[2] C. Adiga, T. Kim, M. S. Mahadeva Naika and H. S. Madhusudhan, On Ra-manujan's Cubic Continued Fraction and Explicit Evaluations of Theta Func-tions,Indian J. Pure and App. Math., No. 55, 9(2004), 1047-1062.
[3] G. E. Andrews, An introduction to Ramanujan's 'lost' notebook, Amer. Math. Monthly, 86(1979), 89-108. 11
[4] G. E. Andrews, The Lost Notebook Part I, Springer Verlang, New York, 2005.
[5] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.
[6] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998.
[7] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
[8] H.H. Chan, On Ramanujan's Cubic Continued Fraction, Acta Arith. 73(1995), 343-355.
[9] H.H. Chan and S.S. Huang, On the Ramanujan G"ollnitz Gordon Continued Fraction, Ramanujan J., 1(1997), 75-90.
[10] S. Ramanujan, Notebooks, 2 volumes, Tata Institute of Fundamental Research, Bombay, 1957.
[11] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
[12] K.R. Vasuki and B.R. Srivatsa Kumar, Certain identities for the Ramanujan Gollnitz Gordon Continued fraction, J. of Comp. and Applied Mathematics. 187(2006),87-95.

