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ABSTRACT—This paper presents a built-in self repair 
analyzer(BIRA) with the optimal repair rate for in memory arrays 
with redundancy. The proposed method requires only a single test, 
even in the worst case. By performing the must-repair analysis on the 
fly during the test, it selectively stores fault addresses, and the final 
analysis to find a solution is performed on the stored fault addresses. 
To enumerate all possible solutions, existing techniques use depth 
first search using a stack and a finite-state machine. Instead, we 
propose a new algorithm and its combinational circuit 
implementation. Since our formulation for the circuit allows us to 
use the parallel prefix algorithm, it can be configured in various 
ways to meet area and test time requirements. The total area of our 
infrastructure is dominated by the number of content addressable 
memory entries to store the fault addresses, and it only grows 
quadratically with respect to the number of repair elements. The 
infrastructure is also extended to support various types of word-
oriented memories by using pre computation CAM. 

Keywords—Built-in self repair (BISR), memory test, Built in repair 
analyzer(BIRA). 
 

I. INTRODUCTION 
 

Today’s system-on-chip (SoC) environment requires 
significant changes in testing methodologies for memory arrays. 
The failure of embedded memories in a SoC is more expensive 
than that of commodity memories because a relatively large die 
is wasted. Due to the large die size and the complex fabrication 
process for combining memories and logic, SoCs suffer  from   
the relatively lower  yield, if Necessitating yield optimization 
techniques at present, the area occupied by the embedded 
memories takes more than half of the total area of a typical SoC, 
and the ratio is expected to keep increasing in the future. The 
defects are thus likely to affect the functionality of the memory 
arrays rather than that of logic. In addition, the aggressive design 
rules make the memory arrays prone to defects. Therefore, if the 
overall SoC memory yield is dominated by the other memory 
yield optimizing 

 
 
Fig. 1. Required number of CAM entries and worst-case test sessions of each 
analyzer for several redundancy configurations 
 
 the memory yield plays a crucial role in the SoC environment. 
To improve the yield, memory arrays are usually equipped with 
spare elements, and external testers have been used to test the 
memory arrays and configure the spare elements. However, in 
area for on-chip test infrastructure at lower cost than before, 
which makes feasible a variety of built-in self test (BIST) and 
built-in self-repair (BISR) techniques for reducing the test time. 
For existing optimal analyzers as well as our analyzer, Fig. 1 
shows the number of test sessions and CAM entries required 
for the repair analysis.. Our infrastructure provides the 
optimal repair rate with a single test as in CRESTA and has the 
same requirements for the number of CAM entries,Instead 
of a stack and a finite- state machine (FSM) used to enumerate 
all possible solutions, we propose a combinational circuit, which 
can be configured in various ways to meet the requirements for 
area and test time. For the fastest configuration, it can generate 
the next solution candidate in a single cycle. Unlike most repair 
analysis studies, we show that the proposed method can work for 
word-oriented memories. 
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II. PROPOSED INFRASTRUCTURE 

 

In this section, we propose an on-chip infrastructure for 
bit-oriented memories. This infrastructure will be extended for 
word-oriented memories later. Our repair analyzer requires only 
a single test and provides the optimal repair rate. Our 
infrastructure does not depend on BIST engines, and we assume 
that an arbitrary BIST engine tests a memory array and provides 
fault addresses whenever detected. The must-repair analysis is 
performed concurrently with the test, while the final analysis is 
done after the test is completed. The must repair analyzer 
(MRA) is shown in Fig. 2. The MRA consists of a pair of CAMs 
for fault addresses, called the fault-list, and a pair of CAMs for a 
repair solution, called the solution record. In the fault-list, each 
CAM has one extra valid bit for each word, and the valid bits are 
initialized to “0” in the beginning. Since the CAMs assert “1” at 
the valid bit position for write and match operation, only written 
entries can be matched. During the test, if the BIST engine 
detects a fault, it sends the fault address to the MRA on the fly 
through BIST_R_DUTAddrand BIST_C_DUTAddr, and 
continues the test. The row (column)fault address is compared 
against row (column) CAM entries, and the number of matched 
entries is efficiently counted by a parallel counter[1] . If the 
number of the matched entries equals in the row (column) CAM, 
the row (column) indicated by the fault address satisfies the 
must-repair condition and R_MustRepair (C_MustRepair) signal 
is asserted. If the fault address triggers neither the row nor 
column must-repair condition, MRA writes the row and column 
address in the row and column CAMs, respectively. if the 
overflow of the fault-list occurs, the memory array can be 
determined as un repairable, and the test can be terminated early. 
If a particular row or column is identified as must-repair, the row 
or column address must be part of the solution. Thus the MRA 
writes the row or column address in the solution record. The L 
registers are used as valid bits for the solution record and also 
determine the next available CAM entry. Since a must-repair 
row and a must-repair column can be identified by a fault at the 
same time, the MRA should be able to write a pair of row and 
column addresses simultaneously. Once a row or column address 
is stored as part of solution by the must-repair condition, then all 
solution candidates considered by the SOLVER include the 
address, and faults on the address do not affect the final analysis 
any more. Therefore, such faults do not need to be stored, and 
we can collect all necessary information for the final analysis 
during a single test. Once the test is completed (thus the must-
repair analysis is done), BIST_Done signal is asserted and the 
final analysis is started. The operation of the SOLVER and the 
MRA in the final analysis phase is illustrated in Fig.3. In the 

final analysis, The SOLVER will generate repair strategies one 
by one and will check whether each repair strategy can fix all the 
faults captured in the fault-list. If “r ” and “c”are mapped to“1” 
and “0”, respectively, then a repair strategy can be represented 
by a-bit word. The Repair Strategy module comprises a-bit 
register and stores the repair strategy being tested currently. The 
first repair strategy is generated depending on the numbers of 
must-repair rows and columns, or Used Must Repair Rows and 
Used Must Repair Cols. If one repair row and one repair column 
are used as must-repair, only the two repair strategies “r ” and 
“c” should be generated After a repair strategy is tested, the state 
of the MRA should be reverted to that right after the must-repair 
analysis so the values in the L registers are copied to the L_save 
registers before the final analysis begins. The SOLVER 
generates the first repair strategy and the MRA reads each fault 
address in the fault-list in order until there exists no more fault 
address or the RESTART signal is arrived. The MRA check if 
each fault is covered by the current solution, stored in the 
solution record, and asserts R_Covered or C_Covered. If both 
signals are low, the fault should be covered by a new repair row 
or column. The SOLVER determines whether a repair 
row or column is used for the uncovered fault, and 
asserts R_Insert or C_Insert. If R_Insert (C_Insert) is high, 
the fault row (column) address is written in the row 
(column)CAM of the solution record. If the CAM is full, the 
memory array cannot be repaired by the first repair strategy, and 
the SOLVER generates the next repair strategy and asserts the 
RESTARTsignal. When the RESTART signal becomes high, the 
MRA restores the initial state, and the next repair strategy starts 
being evaluated. In this way, the SOLVER explores the solution 
space and can find a optimal solution, for the cost function. 
          In our implementation, the cost is defined as the number 
of used spare elements. The SOLVER has a register to store the 
cost of the current repair strategy, or Used Repair Elements. The 
SOLVER also has registers to store the repair strategy with 
minimum cost so far and the minimum cost, or Repair Strategy 
Opt and Used Repair ElOpt. The current cost is compared 
against the minimum cost so far, which generates the Better 
signal. If the Better signal goes down during the evaluation of 
the current repair strategy, the SOLVER immediately asserts the 
RESTART signal and moves on to the next repair strategy. If the 
Better signal stays at “1” until the end of the evaluation, the 
SOLVER saves the current repair strategy and its cost. Since the 
SOLVER continues to search for a better solution even after 
finding a solution, the MRA may not have the optimal solution 
after the last repair strategy is evaluated. To reduce area, we 
have stored the optimal repair strategy instead of the optimal 
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solution. If the solution is directly stored, the size of the solution 
record should be doubled.  

 In word-oriented memories the data in a word is 
usually not placed in adjacent locations due to several issues 
such as the coupling effect, and the columns associated with the 
same bit position are clustered together. In type A memories, 
there are spare column-groups of columns each. A group of 
columns associated with a word is replaced with a space-column 
group. In other words, the column replacement is performed on a 
column group basis. For example, if the first bit line in group 0 
is faulty, and it is replaced.  

 
The first spare column in group 0, then the first bit lines 

in the other groups are also replaced with the associated first 
spare columns, respectively. The spare allocation problem in this 
type can be reduced to the conventional spare allocation 
problem for bit-oriented memories. Most repair analyzers in the 
literature are developed for bit-oriented memories. In type B 

memories, a faulty column is replaced with a spare column, but 
among a group of columns associated with a word, only one 
column can be replaced. Where the restriction comes from. A 
word-oriented memory of type B has only spare columns un like 
that of type A. Each spare column is selected when a 
programmed column address is accessed. Up to faulty columns 
can be replaced, but columns that constitute a word cannot be 
replaced together. An efficient implementation of a word-
oriented memory of this type is proposed.  memory of type C, 
where any faulty column can be replaced with an available spare 
column without any restriction. Various implementations In 
order to generalize the constraint that arises in type B, wide fine 
a new term. In a  memory, if up to  columns out of   those 
associated with a word can be replaced with spare columns, the 
memory is column-per-word replaceable. Thus, memories of 
type B are 1 column-per-word replaceable.ig.3. Solver details 
and MRA operation in the 
 final analysis phase 

 
III. EXTENSION FOR WORD-ORIENTED 

MEMORIES 
 
In this section, we will extend the proposed 

infrastructure for word-oriented memories, which is more 
common than bit-oriented memories in practice. Unlike the bit-
oriented memory case, from the BIST engine, our infrastructure 
takes as input a triplet (R ,C , S), where is the row (column) 
address, and is the failure syndrome, which is the exclusive OR 
of the test response and the expected output of the word[2] .  

 
 

Fig 2. Column circuitry of a word-oriented memory of type A. 
we can discard the failure syndrome and can input only 

the row and column addresses to the proposed infrastructure. 
Then without any modification, it will perform repair analysis 
for type A word-oriented memories. 

 
 
 

a) Type B MEMORY 
 

For a word-oriented memory of type B, our repair 
analyzer is modified as follows. Let be the word size of the 
device under test (DUT). We will map the word-oriented 
memory to a bit-oriented memory. Since every bit should be 
addressable in the bit-oriented memory, we expand the width of 
the column address by to distinguish each column within a word. 
We call the extended address the virtual column address. In this 
case, a triplet can generate up to virtual column address for the 
bit-oriented memory. However, in the case that the number of 
“1”s in is greater than 1, it is obvious that the row being tested is 
a must-repair row since the DUT is 1 column-per-word 
replaceable. Thus, if this case is handled separately, one triplet 
will generate only one virtual column address. The pair of the 
incoming row address and the virtual column address is fed into 
the proposed infrastructure, which will work with the word-
oriented memory of type B.  
       Let us extend this scheme for a column-per-word 
replaceable memory where . In this memory, a triplet can 
generate virtual column addresses. It is common to perform 
memory BIST at-speed for higher test quality, which means that 
our infrastructure may receive a triplet at every cycle so the 
virtual column addresses may need to be handled in one 
cycle[3]. They can be placed in pipeline, but this does not 
prevent the BIST from being stopped. 
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Fig. 3. Column circuitry of a word-oriented memory of type B. 

 
Thus, in order to enable at-speed BIST together with 

BISR, it is necessary to handle this memory in a different way 
from that of type B. Note that -bit-word-oriented memories of 
type C are column-per-word replaceable. If we can deal with 
type C, any column-per-word replaceable memory with can be 
also handled easily.  

 
b) Type C MEMORY 

  
 We modify the MRA to support word-oriented 

memories of type C. To begin with, we define several terms. In 
word-orient memories, bits (columns) have the same address. 
However, in order to repair such memories on a column basis, 
we need to distinguish each column anyway, so we define the 
extended column address as a pair of a column address and a 
word of bits, each of which corresponds to one among the 
columns indicated by the column address [4]. The extended 
column address can indicate multiple columns within a word. 
Also, we call a pair of a row address and an extended column 
address the extended fault address.Multiple extended fault 
addresses 

dicating

 
 

Fig.4. Column circuitry of a word-oriented memory of type C. 
 

IV. EXPERIMENTAL RESULTS 

 
  We implemented the proposed infrastructure in 130-

nm technology for a memory array with four repair rows and 
four repair columns, and the operating frequency is 400 MHz. 
We custom-designed CAMs and synthesized the other logics 
using Synopsys Design Compiler except an 8-bit -subset 
enumerator  fault within a word can be combined into a single 
extended fault address. Major evaluation factors of BIRA 
performance include analysis time, area, and repair rate. Since 
all these methods provide the optimal repair rate, the repair rates 
are not presented. The number of test and the number of CAM 
entries dominate the analysis time and the area, respectively. 
Thus, the test time in the worst case and the area can be 
estimated. As mentioned earlier, CRESTA performs repair 
analysis in parallel with the test and evaluate all solution 
candidates simultaneously using the multiple sub-analyzers, 
requiring only one test irrespective of the number of repair 
elements. The test and repair analysis finish at the same time, 
and one of the sub-analyzers contains the optimal solution. Since 
no extra cycle after the test is required, the analysis time equals 
the test time. the number of possible solution candidates 
increases linearly in the number of repair elements, and the spare 
allocation problem becomes relatively easy[5]. The method 
reduce the number of required CAM entries at the cost of the 
analysis time. The Basic Solve in performs the exhaustive search 
and requires tests (or, restarts) if the optimal solution is 
necessary in terms of the number of repair elements used. If the 
number of repair elements used does not matter, it may find a 
solution with a few tests  but the worst case bound is still. The 
required number of tests by the intelligent Solve and the 
intelligent Solver First in the worst case seems to be much less 
in simulation, but it is not proven theoretically. In our proposed 
method, the restart of the test does not happen in any case. This 
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comes at the cost of a few extra cycles after the single test for the 
final analysis. 

 

  
Table 1 Numbers of test sessions in the worst case and the numbers of 

cam entries 

 
 

Fig. 7  Read operation of the row CAM in the fault-list. 
 
Our implementation of the proposed method uses 94 

flip flops and the number of flip-flops grows at most linearly 
with respect to the number of repair elements. Also, it uses about 
800 combinational cells including an 8-bit -subset enumerator 
with Kogge-Stone style configuration, The -subset enumerator 
has much slack in timing, so if it is replaced by a slower 
configuration, we can implement it using a smaller number of 
cells. As mentioned earlier, the number of cycles to generate 
repair strategies varies in the stack-based implementation unlike 
the -subset enumerator, which could lengthen the final analysis 
time. However, this may be marginal compared to the long test 
time [6]. Rather, the -subset enumerator is beneficial for its 
simplicity as well as smaller area. Due to the varying generation 
time, the stack-based implementation complicates control logics, 
while our proposed enumerator does not require them and it is 
easy to verify once implemented. 
 

V. CONCLUSION 

 
In this paper, we have proposed an on-chip 

infrastructure for repair analysis with the optimal repair rate. Our 
infrastructure requires a single test and a few extra cycles,  

which is about 600 cycles in a memory array with four 
repair rows and four repair columns. Most built-in repair 
analyzers are developed for bit-oriented memories, whereas our 
repair analyzer also aims at various types of word-oriented 
memories. To achieve this, we have extensively studied existing 
word-oriented repairable memories and have classified them into 
three types. For each type, we have showed how the bit-oriented 
version can be extended. As part of our repair analyzer, we have 
also developed a novel combinatorial circuit for enumerating 
constant-weight vectors. 
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