
International Journal of Advanced Research in

 Electronics, Communication & Instrumentation Engineering and Development

Volume: 2 Issue: 1 08-Apr-2014,ISSN_NO: 2347 -7210

 International Journal of Advanced Research in Electronics, Communication
&Instrumentation Engineering and Development. Volume-1: Issue-2(March- 2013).

ISR Journals and Publications Page 1

BIRA for Word Oriented Memories Using Parallel
Prefix Algorithm.

 C. Bhaskar1, K. Jeyaprakasam2.

Assistant Professor, Department of Electronics and Communication Engineering1, Assistant Professor, Department of Bio Medical
Engineering2, Odaiyappa College of Engineering and Technology, Theni, Tamil Nadu, India1,2.

 bhaseceme@gmail.com1, kannamanilakshmy.swamysaranam@gmail.com2

ABSTRACT—This paper presents a built-in self repair
analyzer(BIRA) with the optimal repair rate for in memory arrays
with redundancy. The proposed method requires only a single test,
even in the worst case. By performing the must-repair analysis on the
fly during the test, it selectively stores fault addresses, and the final
analysis to find a solution is performed on the stored fault addresses.
To enumerate all possible solutions, existing techniques use depth
first search using a stack and a finite-state machine. Instead, we
propose a new algorithm and its combinational circuit
implementation. Since our formulation for the circuit allows us to
use the parallel prefix algorithm, it can be configured in various
ways to meet area and test time requirements. The total area of our
infrastructure is dominated by the number of content addressable
memory entries to store the fault addresses, and it only grows
quadratically with respect to the number of repair elements. The
infrastructure is also extended to support various types of word-
oriented memories by using pre computation CAM.

Keywords—Built-in self repair (BISR), memory test, Built in repair
analyzer(BIRA).

I. INTRODUCTION

Today’s system-on-chip (SoC) environment requires
significant changes in testing methodologies for memory arrays.
The failure of embedded memories in a SoC is more expensive
than that of commodity memories because a relatively large die
is wasted. Due to the large die size and the complex fabrication
process for combining memories and logic, SoCs suffer from
the relatively lower yield, if Necessitating yield optimization
techniques at present, the area occupied by the embedded
memories takes more than half of the total area of a typical SoC,
and the ratio is expected to keep increasing in the future. The
defects are thus likely to affect the functionality of the memory
arrays rather than that of logic. In addition, the aggressive design
rules make the memory arrays prone to defects. Therefore, if the
overall SoC memory yield is dominated by the other memory
yield optimizing

Fig. 1. Required number of CAM entries and worst-case test sessions of each
analyzer for several redundancy configurations

 the memory yield plays a crucial role in the SoC environment.
To improve the yield, memory arrays are usually equipped with
spare elements, and external testers have been used to test the
memory arrays and configure the spare elements. However, in
area for on-chip test infrastructure at lower cost than before,
which makes feasible a variety of built-in self test (BIST) and
built-in self-repair (BISR) techniques for reducing the test time.
For existing optimal analyzers as well as our analyzer, Fig. 1
shows the number of test sessions and CAM entries required
for the repair analysis.. Our infrastructure provides the
optimal repair rate with a single test as in CRESTA and has the
same requirements for the number of CAM entries,Instead
of a stack and a finite- state machine (FSM) used to enumerate
all possible solutions, we propose a combinational circuit, which
can be configured in various ways to meet the requirements for
area and test time. For the fastest configuration, it can generate
the next solution candidate in a single cycle. Unlike most repair
analysis studies, we show that the proposed method can work for
word-oriented memories.

ISRJournals and Publications Page 1

International Journal of Advanced Research in

 Electronics, Communication & Instrumentation Engineering and Development

Volume: 2 Issue: 1 08-Apr-2014,ISSN_NO: 2347 -7210

 International Journal of Advanced Research in Electronics, Communication
&Instrumentation Engineering and Development. Volume-1: Issue-2(March- 2013).

ISR Journals and Publications Page 2

II. PROPOSED INFRASTRUCTURE

In this section, we propose an on-chip infrastructure for
bit-oriented memories. This infrastructure will be extended for
word-oriented memories later. Our repair analyzer requires only
a single test and provides the optimal repair rate. Our
infrastructure does not depend on BIST engines, and we assume
that an arbitrary BIST engine tests a memory array and provides
fault addresses whenever detected. The must-repair analysis is
performed concurrently with the test, while the final analysis is
done after the test is completed. The must repair analyzer
(MRA) is shown in Fig. 2. The MRA consists of a pair of CAMs
for fault addresses, called the fault-list, and a pair of CAMs for a
repair solution, called the solution record. In the fault-list, each
CAM has one extra valid bit for each word, and the valid bits are
initialized to “0” in the beginning. Since the CAMs assert “1” at
the valid bit position for write and match operation, only written
entries can be matched. During the test, if the BIST engine
detects a fault, it sends the fault address to the MRA on the fly
through BIST_R_DUTAddrand BIST_C_DUTAddr, and
continues the test. The row (column)fault address is compared
against row (column) CAM entries, and the number of matched
entries is efficiently counted by a parallel counter[1] . If the
number of the matched entries equals in the row (column) CAM,
the row (column) indicated by the fault address satisfies the
must-repair condition and R_MustRepair (C_MustRepair) signal
is asserted. If the fault address triggers neither the row nor
column must-repair condition, MRA writes the row and column
address in the row and column CAMs, respectively. if the
overflow of the fault-list occurs, the memory array can be
determined as un repairable, and the test can be terminated early.
If a particular row or column is identified as must-repair, the row
or column address must be part of the solution. Thus the MRA
writes the row or column address in the solution record. The L
registers are used as valid bits for the solution record and also
determine the next available CAM entry. Since a must-repair
row and a must-repair column can be identified by a fault at the
same time, the MRA should be able to write a pair of row and
column addresses simultaneously. Once a row or column address
is stored as part of solution by the must-repair condition, then all
solution candidates considered by the SOLVER include the
address, and faults on the address do not affect the final analysis
any more. Therefore, such faults do not need to be stored, and
we can collect all necessary information for the final analysis
during a single test. Once the test is completed (thus the must-
repair analysis is done), BIST_Done signal is asserted and the
final analysis is started. The operation of the SOLVER and the
MRA in the final analysis phase is illustrated in Fig.3. In the

final analysis, The SOLVER will generate repair strategies one
by one and will check whether each repair strategy can fix all the
faults captured in the fault-list. If “r ” and “c”are mapped to“1”
and “0”, respectively, then a repair strategy can be represented
by a-bit word. The Repair Strategy module comprises a-bit
register and stores the repair strategy being tested currently. The
first repair strategy is generated depending on the numbers of
must-repair rows and columns, or Used Must Repair Rows and
Used Must Repair Cols. If one repair row and one repair column
are used as must-repair, only the two repair strategies “r ” and
“c” should be generated After a repair strategy is tested, the state
of the MRA should be reverted to that right after the must-repair
analysis so the values in the L registers are copied to the L_save
registers before the final analysis begins. The SOLVER
generates the first repair strategy and the MRA reads each fault
address in the fault-list in order until there exists no more fault
address or the RESTART signal is arrived. The MRA check if
each fault is covered by the current solution, stored in the
solution record, and asserts R_Covered or C_Covered. If both
signals are low, the fault should be covered by a new repair row
or column. The SOLVER determines whether a repair
row or column is used for the uncovered fault, and
asserts R_Insert or C_Insert. If R_Insert (C_Insert) is high,
the fault row (column) address is written in the row
(column)CAM of the solution record. If the CAM is full, the
memory array cannot be repaired by the first repair strategy, and
the SOLVER generates the next repair strategy and asserts the
RESTARTsignal. When the RESTART signal becomes high, the
MRA restores the initial state, and the next repair strategy starts
being evaluated. In this way, the SOLVER explores the solution
space and can find a optimal solution, for the cost function.
 In our implementation, the cost is defined as the number
of used spare elements. The SOLVER has a register to store the
cost of the current repair strategy, or Used Repair Elements. The
SOLVER also has registers to store the repair strategy with
minimum cost so far and the minimum cost, or Repair Strategy
Opt and Used Repair ElOpt. The current cost is compared
against the minimum cost so far, which generates the Better
signal. If the Better signal goes down during the evaluation of
the current repair strategy, the SOLVER immediately asserts the
RESTART signal and moves on to the next repair strategy. If the
Better signal stays at “1” until the end of the evaluation, the
SOLVER saves the current repair strategy and its cost. Since the
SOLVER continues to search for a better solution even after
finding a solution, the MRA may not have the optimal solution
after the last repair strategy is evaluated. To reduce area, we
have stored the optimal repair strategy instead of the optimal

ISRJournals and Publications Page 2

International Journal of Advanced Research in

 Electronics, Communication & Instrumentation Engineering and Development

Volume: 2 Issue: 1 08-Apr-2014,ISSN_NO: 2347 -7210

 International Journal of Advanced Research in Electronics, Communication
&Instrumentation Engineering and Development. Volume-1: Issue-2(March- 2013).

ISR Journals and Publications Page 3

solution. If the solution is directly stored, the size of the solution
record should be doubled.

 In word-oriented memories the data in a word is
usually not placed in adjacent locations due to several issues
such as the coupling effect, and the columns associated with the
same bit position are clustered together. In type A memories,
there are spare column-groups of columns each. A group of
columns associated with a word is replaced with a space-column
group. In other words, the column replacement is performed on a
column group basis. For example, if the first bit line in group 0
is faulty, and it is replaced.

The first spare column in group 0, then the first bit lines

in the other groups are also replaced with the associated first
spare columns, respectively. The spare allocation problem in this
type can be reduced to the conventional spare allocation
problem for bit-oriented memories. Most repair analyzers in the
literature are developed for bit-oriented memories. In type B

memories, a faulty column is replaced with a spare column, but
among a group of columns associated with a word, only one
column can be replaced. Where the restriction comes from. A
word-oriented memory of type B has only spare columns un like
that of type A. Each spare column is selected when a
programmed column address is accessed. Up to faulty columns
can be replaced, but columns that constitute a word cannot be
replaced together. An efficient implementation of a word-
oriented memory of this type is proposed. memory of type C,
where any faulty column can be replaced with an available spare
column without any restriction. Various implementations In
order to generalize the constraint that arises in type B, wide fine
a new term. In a memory, if up to columns out of those
associated with a word can be replaced with spare columns, the
memory is column-per-word replaceable. Thus, memories of
type B are 1 column-per-word replaceable.ig.3. Solver details
and MRA operation in the
 final analysis phase

III. EXTENSION FOR WORD-ORIENTED

MEMORIES

In this section, we will extend the proposed

infrastructure for word-oriented memories, which is more
common than bit-oriented memories in practice. Unlike the bit-
oriented memory case, from the BIST engine, our infrastructure
takes as input a triplet (R ,C , S), where is the row (column)
address, and is the failure syndrome, which is the exclusive OR
of the test response and the expected output of the word[2] .

Fig 2. Column circuitry of a word-oriented memory of type A.
we can discard the failure syndrome and can input only

the row and column addresses to the proposed infrastructure.
Then without any modification, it will perform repair analysis
for type A word-oriented memories.

a) Type B MEMORY

For a word-oriented memory of type B, our repair
analyzer is modified as follows. Let be the word size of the
device under test (DUT). We will map the word-oriented
memory to a bit-oriented memory. Since every bit should be
addressable in the bit-oriented memory, we expand the width of
the column address by to distinguish each column within a word.
We call the extended address the virtual column address. In this
case, a triplet can generate up to virtual column address for the
bit-oriented memory. However, in the case that the number of
“1”s in is greater than 1, it is obvious that the row being tested is
a must-repair row since the DUT is 1 column-per-word
replaceable. Thus, if this case is handled separately, one triplet
will generate only one virtual column address. The pair of the
incoming row address and the virtual column address is fed into
the proposed infrastructure, which will work with the word-
oriented memory of type B.
 Let us extend this scheme for a column-per-word
replaceable memory where . In this memory, a triplet can
generate virtual column addresses. It is common to perform
memory BIST at-speed for higher test quality, which means that
our infrastructure may receive a triplet at every cycle so the
virtual column addresses may need to be handled in one
cycle[3]. They can be placed in pipeline, but this does not
prevent the BIST from being stopped.

ISRJournals and Publications Page 3

International Journal of Advanced Research in

 Electronics, Communication & Instrumentation Engineering and Development

Volume: 2 Issue: 1 08-Apr-2014,ISSN_NO: 2347 -7210

 International Journal of Advanced Research in Electronics, Communication
&Instrumentation Engineering and Development. Volume-1: Issue-2(March- 2013).

ISR Journals and Publications Page 4

Fig. 3. Column circuitry of a word-oriented memory of type B.

Thus, in order to enable at-speed BIST together with

BISR, it is necessary to handle this memory in a different way
from that of type B. Note that -bit-word-oriented memories of
type C are column-per-word replaceable. If we can deal with
type C, any column-per-word replaceable memory with can be
also handled easily.

b) Type C MEMORY

 We modify the MRA to support word-oriented

memories of type C. To begin with, we define several terms. In
word-orient memories, bits (columns) have the same address.
However, in order to repair such memories on a column basis,
we need to distinguish each column anyway, so we define the
extended column address as a pair of a column address and a
word of bits, each of which corresponds to one among the
columns indicated by the column address [4]. The extended
column address can indicate multiple columns within a word.
Also, we call a pair of a row address and an extended column
address the extended fault address.Multiple extended fault
addresses

dicating

Fig.4. Column circuitry of a word-oriented memory of type C.

IV. EXPERIMENTAL RESULTS

 We implemented the proposed infrastructure in 130-

nm technology for a memory array with four repair rows and
four repair columns, and the operating frequency is 400 MHz.
We custom-designed CAMs and synthesized the other logics
using Synopsys Design Compiler except an 8-bit -subset
enumerator fault within a word can be combined into a single
extended fault address. Major evaluation factors of BIRA
performance include analysis time, area, and repair rate. Since
all these methods provide the optimal repair rate, the repair rates
are not presented. The number of test and the number of CAM
entries dominate the analysis time and the area, respectively.
Thus, the test time in the worst case and the area can be
estimated. As mentioned earlier, CRESTA performs repair
analysis in parallel with the test and evaluate all solution
candidates simultaneously using the multiple sub-analyzers,
requiring only one test irrespective of the number of repair
elements. The test and repair analysis finish at the same time,
and one of the sub-analyzers contains the optimal solution. Since
no extra cycle after the test is required, the analysis time equals
the test time. the number of possible solution candidates
increases linearly in the number of repair elements, and the spare
allocation problem becomes relatively easy[5]. The method
reduce the number of required CAM entries at the cost of the
analysis time. The Basic Solve in performs the exhaustive search
and requires tests (or, restarts) if the optimal solution is
necessary in terms of the number of repair elements used. If the
number of repair elements used does not matter, it may find a
solution with a few tests but the worst case bound is still. The
required number of tests by the intelligent Solve and the
intelligent Solver First in the worst case seems to be much less
in simulation, but it is not proven theoretically. In our proposed
method, the restart of the test does not happen in any case. This

ISRJournals and Publications Page 4

International Journal of Advanced Research in

 Electronics, Communication & Instrumentation Engineering and Development

Volume: 2 Issue: 1 08-Apr-2014,ISSN_NO: 2347 -7210

 International Journal of Advanced Research in Electronics, Communication
&Instrumentation Engineering and Development. Volume-1: Issue-2(March- 2013).

ISR Journals and Publications Page 5

comes at the cost of a few extra cycles after the single test for the
final analysis.

Table 1 Numbers of test sessions in the worst case and the numbers of

cam entries

Fig. 7 Read operation of the row CAM in the fault-list.

Our implementation of the proposed method uses 94

flip flops and the number of flip-flops grows at most linearly
with respect to the number of repair elements. Also, it uses about
800 combinational cells including an 8-bit -subset enumerator
with Kogge-Stone style configuration, The -subset enumerator
has much slack in timing, so if it is replaced by a slower
configuration, we can implement it using a smaller number of
cells. As mentioned earlier, the number of cycles to generate
repair strategies varies in the stack-based implementation unlike
the -subset enumerator, which could lengthen the final analysis
time. However, this may be marginal compared to the long test
time [6]. Rather, the -subset enumerator is beneficial for its
simplicity as well as smaller area. Due to the varying generation
time, the stack-based implementation complicates control logics,
while our proposed enumerator does not require them and it is
easy to verify once implemented.

V. CONCLUSION

In this paper, we have proposed an on-chip

infrastructure for repair analysis with the optimal repair rate. Our
infrastructure requires a single test and a few extra cycles,

which is about 600 cycles in a memory array with four
repair rows and four repair columns. Most built-in repair
analyzers are developed for bit-oriented memories, whereas our
repair analyzer also aims at various types of word-oriented
memories. To achieve this, we have extensively studied existing
word-oriented repairable memories and have classified them into
three types. For each type, we have showed how the bit-oriented
version can be extended. As part of our repair analyzer, we have
also developed a novel combinatorial circuit for enumerating
constant-weight vectors.

REFERENCES

[1] R. Rajsuman, “Design and test of large embedded memories An overview,”
IEEE Design Test Comput., vol. 18, no. 3, pp. 16–23, May 2001.

[2] S. Hamdioui, G. Gaydadjiev, and A. van de Goor, “The state-of-art and
future trends in testing embedded memories,” in Proc. Records Int. Workshop
Memory Technol., Design, Test., 2004, pp. 54–59.

[3] Y. Zorian and S. Shoukourian, “Embedded-memory test and repair:
Infrastructure IP for SOC yield,” IEEE Design Test Comput., vol. 20, no. 3, pp.
58–66, May/Jun. 2003.

[4] T. Kawagoe, J. Ohtani, M. Niiro, and T. Ooishi, “A built-in self-repair
analyzer (cresta) for embedded drams,” in Proc. Int. Test Conf., 2000, pp. 567–
574.

[5] S. Shoukourian, V. A. Vardanian, and Y. Zorian, “A methodology for design
and evaluation of redundancy allocation algorithms,” in Proc. VLSI Test Symp.,
2004, pp. 249–255.

[6] P. Oehler, S. Hellebrand, and H.-H. Wunderlich, “An integrated built-in test
and repair approach for memories with 2D redundancy,” in Proc. Eur. Test
Symp., 2007, pp. 91–96.

Biography

C.Bhaskar, Assistant professor in ECE Department in
Odaiyappa College of Engineering and Technology,
Theni, Tamil Nadu, India. He has more than 09 years
of teaching experience with expertise in VLSI. He has
completed post graduate in VLSI Design.

K.Jeyaprakasam, Assistant professor in
Department of Bio Medical Engineering in
Odaiyappa college of Engineering and
Technology. Theni, Tamil Nadu, India. He has
more than 10 years of teaching experience.

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 5

http://www.tcpdf.org

