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Abstract — The feasibility of the Extended Kalman Filter 

(EKF) using range and bearing measurements is explored 

for on-seawater applications. The input estimation 

technique used for in-air applications is tried and extended 

to on-sea water applications. The algorithm estimates, 

target motion parameters and detects target maneuver 

using chi-square distributed random sequence residual. 

Upon detection of target maneuvers, this algorithm 

corrects the velocity and position components using 

acceleration components, which are calculated using the 

input estimation technique. Finally, the performance of 

this algorithm is evaluated in Monte-Carlo Simulation. 

 

Index Terms –EKF, chi-square distribution, Monte-Carlo 

simulator. 

I.  INTRODUCTION 

 In the ocean environment, two-dimensional Target 

Motion Analysis (TMA) is generally used. In the underwater 

scenario, active sonar is positioned on an observer and it 

generates range and bearing measurements of the target in the 

water. The observer is assumed to be moving in straight line 

and the target is also assumed to be moving mostly in straight 

line with maneuver occasionally. The observer processes the 

measurements and estimates the target motion parameters, 

viz., range, course, bearing and speed of the target. More 

literature is available to track a target using range and bearing 

measurements [1-3]. In this paper, the authors try to apply 

Kalman Filter for the sea scenario using the input estimation 

technique to detect target manoeuvre, estimate target 

acceleration and correct the target state vector accordingly. 

 

There are mainly two versions of Kalman Filter – a 

linearised Kalman Filter (LKF) in which polar measurements 

are converted into Cartesian coordinates and the well-known 

Extended Kalman Filter (EKF) in which polar measurements 

are directly considered. Recently S. T. Pork and L. E. Lee [4] 

presented a detailed theoretical comparative study of the 

above two methods and stated that both the methods perform 

well. Here, EKF is used throughout the paper. 

 

The detection of target manoeuvre is carried out as 

follows. In this process, it is assumed that the estimator EKF is 

of high quality in the sense that solution is possible for all 

scenarios including all quadrants (Several geometries are 

tested using EKF and the solution is invariably obtained). It is 

also assumed that the solution diverges only when target 

maneuvers. When target is not maneuvering, it is observed 

from much geometry that the bearing residuals of the EKF are 

almost zero and their small scatter around the zero bearing line 

is the random noise. It is also noted that the bearing residuals 

are not close to zero when the target is maneuvering. It is very 

difficult to confirm whether the target has maneuvered or not 

just by visual inspection of the bearing residual plot, due to the 

corruption of the bearing measurement with random noise. 

Hence, zero mean chi-square distributed random sequence 

residuals of the non-maneuvering model, in sliding window 

format are used for the detection of target maneuvers. Target 

maneuver is declared when the normalized squared 

innovations exceed the threshold. At the same time using these 

innovations of the Kalman Filter, the acceleration input is 

estimated and used to correct the state estimate. During the 

window period the acceleration input is assumed to be 

constant.  This procedure is called input estimation and is 

given in detail, in references [5] & [6].In this paper the authors 

try to extend the input estimation technique being used for in-

air applications to on-sea water applications. 

 
  Section 2 describes mathematical modelling of the 
measurements, observer and target motions. It also describes 
the formulation of Bar - Slalom’s normalized squared 
innovation process. Section 3 is about the implementation of 
the algorithm. Section 4 is about the simulation and the results 
obtained. The limitation of the filter is in section 5 and finally 
paper is concluded in section 6. 

II. MATHETICAL MODEL 

A. Target Motion parameters: 

Let the target state vector be XS (k) and is given by  

          (k)R   (k)R   (k)y  (k)x  (k)X 

T

yxS 







  (1) 

Where  are target velocity components, and 

Rx (k) and Ry (k) are range components.  For the purpose of 

introducing concepts, to start with target is assumed to be non-

manoeuvreing. The target state dynamic equation is given by   

(k)y and (k)x

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     (2)
  

Where  is zero mean Gaussian plant noise  

and b (k+1) is transient matrix and the deterministic vector 

respectively. These are given by          

          (3) 

Where it is a sample time between measurements, and 

 

                         
(4)        

Where xo (k) and yo (k) are own ship position components 

respectively. The true North convention is followed for all 

angles to reduce mathematical complexity and easy 

implementation. The measurement vector Z (k) is given by 

            (5) 

Where Bm(k) and Rm(k) are bearing and range measurements 

and are given by  

 

            (6) 

Where B(k) and R(k) are actual bearing and range 

respectively.  These are given by  

                         (7)        

where are zero mean uncorrelated 

Gaussian noises in range and bearing measurements 

respectively.  Using (5) and (6), the following equations can 

be written  

                              (8)                            

                                           

 Where 

 H(k)=          (9) 

It is assumed that the plant and measurement noises are 

uncorrelated to each other. The covariance prediction is  

                                                                  (10) 

where Q is the covariance of the plant noise. The Kalman gain 

is  

            (11) 

Where are (k+1) is input measurement error covariance 

matrix. The state and its covariance corrections are given by  

 State:   

 

(12)                                                                                                         

Covariance:     

  (13)
         

 

B. Tracking of a maneuvering target: 

 Maneuvering targets are characterized by  

         (14)           

Where u(k) is an unknown input modelling the target 

maneuvers (u = 0 when there is no maneuver). In the 

modelling of the dynamics of non-maneuvering targets, the 

process noise is assumed to be low. A maneuver manifests 

itself into a large innovation, when target maneuver exists. 

               Estimation of the state is done using the model 

without input (non-maneuvering model).  From the 

innovations of the Kalman Filter based on the non-

maneuvering model, the input u (k) is detected, estimated and 

used to correct the state estimate. Zero mean chi-square 

distributed random sequence residuals, in sliding window 

format are used for the detection of target manoeuvre. During 

this window period, the input is assumed constant.  Target 

manoeuvre is declared when the normalized innovations 

exceed the threshold. This procedure is called input estimation 

and is given in detail in references [5] & [6].  

                 In this paper, the authors try to apply Kalman Filter 

for the sea scenario using the input estimation technique 

(which is already in use for radar applications). Here the final 

equations are reproduced from the references [5] & [6]. 

                Assume that the target starts manoeuvreing at time 

k. It’s unknown inputs during the time interval [k, k +s] are u ( 

i ), i = k,…..k+s-1. An asterisk denotes the state estimates 

from the non-manoeuvreing model. The innovation of 

manoeuvreing target model is zero mean, white and is given  

by 

                                        (15)                                       

The innovations corresponding to non-manoeuvreing target 

model is given by   

                       (16)
     (16)               

This innovation has the white noise sequence plus a term 

related to the inputs. 

        (17)     

 

Can be rewritten as 
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                                                                                              (18)
 

Where      

                                   (19)                             

 

 of the non-manoeuvreing model is a linear measurement 

of the input manoeuvre u in the presence of the additive white 

noise . The input can be estimated using least squares 

criterion from 

ζuy   
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                                  are the stacked “measurement “ vector and matrix, and the 

“noise”. 

                                                                 (21)                                                                 

 

 is zero mean with block-diagonal covariance matrix. 

                    S= diag [S (i)]                                                  (22) 

The estimation can be done in batch form as  

                                                 (23) 

 

Where S is given by  

with the resulting covariance matrix  

  L = 
                                             (24)

 

Estimation of u is accepted, i.e, a manoeuvre is declared only 

if it is “statistically accepted”. The significance for the vector 

estimate u is 

cûLû)ûd( 1T  

                                                            (25)
 

Where c is a threshold. The choice of the threshold is as 

follows. If the input is zero, then       

u~N(0,L).                         (26) 

i.e., the estimate is a normal random variable with mean zero 

and covariance P. Then the statistic d from equation (25) is   

Chi-squared distributed with nu degrees of freedom and c is 

chosen such that the probability of false alarm is  

                                   (27)      

  

If a manoeuvre is detected, then the state has to be corrected, 

as follows. The input term is used with the estimated input. 

            (28)

                    (28)       

The covariance associated with the estimate equation (28) is 

     P
u  

(k+s+1/k+s)=P(k+s+1/k+s)+MLM
T  

                                                                                             (29)    (29) 

 A manoeuvre is considered finished when the input estimate 

based on measurements from the sliding window of length s 

becomes insignificant. The length s is a design parameter. In 

cases where the duration of a manoeuvre is short relative to a 

sample interval, an input pulse length of s = 1 or 2 is 

appropriate. 

 

III. IMPLEMENTATION OF THE ALGORITHM 

 

 Using first and second sets of bearing and range 

measurements, the speed components of the target are 

calculated and the actual computation of the Kalman filter 

starts from second measurement onwards.  

The initial estimate of target state vector X(2/2) is given by 

 Tmmmm (2)(2)cosBR(2)(2)sinBRterm2term1X(2/2) 

                                                                                              (30)            
 

 where                                      

     (31)

     (31) 

It is assumed that the initial estimate, X (2|2) is uniformly 

distributed. Then the elements of initial covariance diagonal 

matrix can be written as 

 

 

 

                                             (32)

  

                The target motion parameters are target’s range, 

course, bearing and speed and these are calculated from the 

estimated state vector as follows. 
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                                             (33)

                                           

           The Kalman filter is implemented as follows. After 

receiving the second measurement, X(2/2) and P(2/2) are 

computed using eqn. (30) and (32) respectively. Using  

X(2/2), P(2/2) and H(2) are calculated. Then transient matrix, 

Kalman gain, correction in state vector and its covariance 

matrix are computed. Target motion parameters are calculated 

from the corrected state vector using eqn. (33) and the validity 

of the solution is found out using the corrected covariance 

matrix. After the receipt of the 3rd sample, transient matrix is 

computed and then the state vector and its covariance matrix 

are updated. Using Kalman gain, the state vector and its 

covariance matrix are corrected. In this way, the process is 

repeated for a simulation period of 30 minutes. 

              The size of the sliding window, in manoeuvre 

detection, is selected on the basis of the results of several 

geometries in Monte-Carlo simulation. If the window size is 

less than two, it is seen that the performance is drastically 

reduced and hence a 2-sample window is employed. 

IV. SIMULATION AND RESULTS 

Let us consider active sonar with range scales and their 
corresponding measurement timings as 5 Km, 10 Km, 20 Km, 
40 Km and 10 sec, 20 sec, 40 sec and 80 sec respectively. It 
means that if range is less than 5 km, then range and bearing 
measurements are available at 10 sec and so on. The time 
intervals based on these range scales are not considered in 
Kalman filter, as these are not exact. They are recalculated 
based on the range measurement considering that the sound 
velocity in water as 1500 m/sec. Let the maximum noise in the 
bearing and range measurements be 1 deg and 20 meters 
respectively. 

                The algorithm is realized using Mat lab on a pc 
platform. Let us consider a typical long-range scenario on sea. 
The observer is moving on 65 degrees course at a speed of 30 
knots.  The target is moving on 100 degrees course at a speed 
of 10 knots. The target is initially at zero degrees line of sight 
and at a range of 30 km. The positions of target and observer 
are updated at every second. However the measurements after 
corruption with noise available to the Kalman filter are 
according to range scales. Here the range is 30 km, so the time 
interval between the measurements is 80 seconds. 

             In general, the errors allowed in the estimated 
target motion parameters are   8% in the range, 3

o  
in the course 

and 3m/s  in velocity estimates. The results of this scenario in 

Monte-Carlo Simulation with 100 runs are shown in Fig. 1. In 
these figures and in the subsequent figures, Rerror, Cerror and 
Serror denote the errors in range, course and speed estimates 
respectively. From the results, it is observed that the solution 
with the required accuracy is obtained from 6th sample (480 
seconds) onwards. The theoretical value of the chi-square 
variable with 2 degrees of freedom at 90% confidence level is 
4.61. Out of 100 Monte-Carlo runs, it is observed that the 
maximum value of d(u) is 1.6 and mostly it is around 0.3. So, 
when there is no target manoeuvre, the experimental value is 
matching with that of theoretical value. 

          For the purpose of illustration, in the previous scenario, 

it is assumed that the target is changing its course from 100 to 

180 degrees at 540 seconds. The target has completed the 

manoeuvre by 560 seconds, with turning rate of 3 degrees per 

second. The statistic threshold d(u)  is changed to 0.4, 1, 6.7 at 

7
th

  (560 secs), 8
th
 (640 secs) and 9

th
 (720 secs) samples 

respectively. So the correction of state vector is commenced 

from 10
th

 sample onwards.  The statistic threshold d(u)  is 

changed to 3.8, 0.9 at 10
th

  and 11
th

  samples respectively. 

 

 

Fig 1. (a) Error in range estimate 

 

Fig 1. (b) Error in course estimate 

 

Fig 1. (c) Error in speed estimate 
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Fig 2. (a) Error in range estimate 

 

Fig 2. (b) Error in course estimate 

 
Fig 2. (c) Error in speed estimate 

 

V. LIMITATIONS OF FILTER 

It is seen that the filter is able to provide good results when the 

error in bearing measurement is less than 1.5
o
 rms.  

 

VI. CONCLUSION 

The authors have attempted an approach to extend the 

algorithm for applications in air to the applications in 

underwater- viz. Tracking a maneuvering target using 

measurements from active sonar. The experiment shows that 

the algorithm is able to track the target and hence it can be 

used for underwater applications. 
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