
International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6, Issue: 3,Special Issue: 2 ,Apr,2023 ,ISSN_NO: 2321-3337

Shielding against Web Application Assaults: Approaches, Difficulties

 Implications

 Chunchu Vinod Babu1 , M. Nithish Dhananjay Yadav2 , V. Praneeth3, Priya.V4

 UG Scholar1 2 3-Department of CSE, GRT Institute of Engineering and Technology, Tiruttani.

 Priya. V4 Asst Professor-Department of CSE, GRT Institute of Engineering and Technology, Tiruttani.

 vinodchunchu000@gmail.com, nithishyadav38@gmail.com, vadhiarpraneeth@gmail.com

 Priya.v@grt.edu.in

ABSTRACT— Probably the most hazardous

web assaults, for example, Cross-Site Scripting

and SQL infusion, misuse vulnerabilities in web

applications that may acknowledge and process

information of questionable starting point

without appropriate approval or sifting,

permitting the infusion and execution of dynamic

or space explicit language code. These assaults

have been always beating the arrangements of

different security release suppliers in spite of the

various countermeasures that have been

proposed in the course of recent years. In this

paper, we give investigate different guard

systems against web code infusion assaults. We

propose a model that features the key

shortcomings empowering these assaults, and

that gives a typical point of view to examining the

accessible resistances. Discovery exactness is of

specific significance, as our discoveries show

that numerous guard components have been tried

in a poor way. Likewise, we see that a few

components can be skirted by aggressors with

information on how the instruments work. At long

last, we talk about the consequences of our

examination, with accentuation on factors that

may thwart the across-the-board appropriation

of resistances in practice.

Keywords - Web Application, Cross Site

Scripting, SQL Infusion.

1. INTRODUCTION

A smart card is a device that includes an

embedded integrated circuit that can be either

a secure microcontroller or equivalent

intelligence with internal memory or a

memory chip alone. The card connects to a

reader with direct physical contact or with a

remote contactless radio frequency interface.

With an embedded microcontroller, smart

cards have the unique ability to store large

amounts of data, carry out their own on-card

functions and is available in a variety of form

factors, including plastic cards, key fobs,

watches, subscriber identification modules

used in GSM mobile phones, and USB-based

tokens. This paper initiates the study of two

specific security threats on smart-card- based

password authentication in distributed

systems. Smart-card- based password

authentication is one of the most commonly

used security mechanisms to determine the

identity of a remote client. The authentication

is usually integrated with a key establishment

protocol and yields smart-card-based

password-authenticated key agreement. The

security analysis made indicates that the

improved scheme remains secure under

offline-dictionary attack in the smart-card-

loss case.

ISRJournals and Publications Page 1772

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6, Issue: 3,Special Issue: 2 ,Apr,2023 ,ISSN_NO: 2321-3337

2. CODE INJECTION ATTACKS IN

WEB APPLICATIONS

Lack of input validation is a major

vulnerability behind dangerous web application

attacks. By taking advantage of this, attackers

can inject their code into applications to

perform malicious tasks. Exploits of this kind

can have different forms depending on the

execution context of the application and the

location of the programming flaw that leads

to the attack.

Bratus et al. portray the issue in a more

generic way: “unexpected (and unexpectedly

powerful) computational models inside

targeted systems, which turn a part of the

target into a so-called ‘weird machine’

programmable by the attacker via crafted

inputs (a.k.a. ‘exploits’).” In particular,

“every application that copies untrusted input

verbatim into an output program is

vulnerable to code injection.” Ray and Ligatti

have proved this claim based on formal

language theory.

Code injection attacks can be divided in two

categories. The first involves binary code and

the second higher-level language code. An

extensive survey on binary code injection

attacks was conducted by Lhee and Chapin.

Advances in memory corruption vulnerability

exploitation have been studied extensively

and countermeasures to such attacks have

already been analyzed. In this work we do not

consider binary code injection, focusing

instead on defenses that protect web

applications against attacks based on the

injection of higher-level language code.

3. EXISTING SYSTEM

In Existing System, the web application

attacks may involve security misconfigurations,

broken authentication and session management,

or other issues. Some of the most dangerous

and prevalent web application attacks,

however, exploit vulnerabilities associated

with improper validation or filtering of

untrusted inputs, resulting in the injection of

malicious script or domain-specific language

code. Attackers seem to find new ways to

introduce malicious code to applications

using a variety of languages and techniques.

Meanwhile, during the last decade, there

have been numerous mechanisms designed to

detect one or more of types of such attacks.

Although some deployed and widely used

frameworks, such as CSP, share characteristics

(for instance, HTML sanitization and eval

handling) with previous proposals, most

research works are still not used in practice.

3.1 Disadvantages of Existing System

Accuracy: protection mechanisms are as

good as their detection capability; this

requires low false positive and false negative

rates. The increasing number of SQL

injection attacks suggests that programmers

are not always that careful. One of our key

findings indicates that many proposed

defense are tested in a poor manner.

4. PROPOSED SYSTEM

We explore how different attacks associated

with the exploitation of untrusted input

validation errors can be modeled under a

common perspective. To that end, we

ISRJournals and Publications Page 1773

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6, Issue: 3,Special Issue: 2 ,Apr,2023 ,ISSN_NO: 2321-3337

propose an exploitation model which

highlights that most of the steps needed to

mount different types of code injection

attacks are common. This is validated by the

fact that some protection mechanisms defend

against more than one of these types of

attacks. We categorize a selection of

representative protection mechanisms. In our

selection we include protection mechanisms

that counter web attacks when they take

place. Similarly, dynamic analysis

techniques that examine applications to

identify vulnerabilities that may lead to the

attacks.

4.1 Advantages of Proposed System

We provide a unified exploitation model for

different types of web application attacks

based on code injection. We categorize and

analyze proposed defense using a set of

criteria that are important for building

protection mechanisms. We put emphasis on

factors that may hinder the widespread

deployment of protection mechanisms, and

the transition of tools from research to

practice.

5. BLOCK/ARCHITECTURE

DIAGRAM

6. DATA FLOW DIAGRAM

A data flow diagram (DFD) is a graphical

representation of the “flow” of data through

an information system. It differs from the

flowchart as it shows the data flow instead of

the control flow of the program. A data flow

diagram can also be used for the visualization

of data processing. The DFD is designed to

show how a system is divided into smaller

portions and to highlight the flow of data

between those parts.

Data Flow Diagram is an important technique

for modeling a system’s high-level detail by

showing how input data is transformed to

output results through a sequence of

functional transformations. DFDs reveal

relationships among and between the various

components in a program or system. DFD

consists of four major components: entities,

processes, data stores and data flow.

Fig 6.1 Data Flow Diagram

ISRJournals and Publications Page 1774

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6, Issue: 3,Special Issue: 2 ,Apr,2023 ,ISSN_NO: 2321-3337

7. RESULT ANALYSIS

This result discusses about the implementation

of the shielding against the web attacks and

the below Fig 7.1, Fig 7.2, Fig 7.3 and Fig 7.4

shows the implementation on the proposed

methodology

 Fig 7.1 Home

Fig 7.2 Registration

Fig 7.3 Transcation

Fig 7.4 Image Authentication

8. CONCULSION

All together for a security instrument to be

utilized by and by, it must give some an

incentive to the client. Specifically, the worth

ought to exceed the expense of its utilization.

The expense isn't really money related, be

that as it may, might be caused from the time

required to utilize the instrument, any bother

caused, bogus cautions that may raise, etc.

These costs are identified with the issues we

have been researching here: poor testing,

high overhead, absence of freely accessible

models, sending troubles, bargained security.

ISRJournals and Publications Page 1775

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6, Issue: 3,Special Issue: 2 ,Apr,2023 ,ISSN_NO: 2321-3337

Improving any of these perspectives would

not simply build the estimation of an

exploration fill in as a viable device, yet it

would likewise increment its examination

esteem too. Precise recognition detailing

would help in assessing various

methodologies. Broad execution estimations

can uncover unreasonable plans and core

interest exertion somewhere else.

Accessibility of source code upgrades

essential logical undertakings like

confirmation and reproducibility. Simplicity

of organization brings simplicity of

experimentation. Secure techniques can

frame the premise for creating techniques

with progressively broad inclusion.

REFERENCES

[1]Z. Su and G. Wassermann, “The essence

of command injection attacks in web

applications,” in Proceedings of the 33rd

ACM Symposium on Principles of

Programming Languages, 2006, pp. 372–

382.

[2] D. Ray and J. Ligatti, “Defining code-

injection attacks,” in POPL ’12. ACM, 2012,

pp. 179–190.

 [3] M. Heiderich, M. Niemietz, F. Schuster,

T. Holz, and J. Schwenk, “Scriptless attacks:

stealing the pie without touching the sill,” in

roceedings of the 19th conference on

Computer and communications security,

2012, pp. 760–771.

[4] J. Dahse, N. Krein, and T. Holz, “Code

reuse attacks in PHP: Automated POP chain

generation,” in Proceedings of the 21st ACM

Conference on Computer and

Communications Security, 2014, pp. 42–53.

 [5] W. G. Halfond, J. Viegas, and A. Orso,

“A classification of SQL-injection attacks

and countermeasures,” in Proceedings of the

International Symposium on Secure Software

Engineering, Mar. 2006.

[6] M. Shahzad, M. Z. Shafiq, and A. X. Liu,

“A large scale exploratory analysis of

software vulnerability life cycles,” in ICSE

’12. IEEE Press, 2012, pp. 771–781.

 [7] H. Shahriar and M. Zulkernine,

“Mitigating program security vulnerabilities:

Approaches and challenges,” ACM Comput.

Surv., vol. 44, no. 3, pp. 11:1–11:46, Jun.

2012.

 [8] S. Axelsson, “The base-rate fallacy and

the difficulty of intrusion detection,” ACM

Trans. Inf. Syst. Secur., vol. 3, no. 3, pp. 186–

205, Aug. 2000.

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 1776

http://www.tcpdf.org

